【題目】如圖,在正三棱柱中,底面邊長(zhǎng)為2,為的中點(diǎn),三棱柱的體積.
(1)求三棱柱的表面積;
(2)求異面直線與所成角的余弦值.
【答案】(1);(2).
【解析】分析:(1)由三棱柱體積,求出高AA′=3,由此能求出三棱柱的表面積;(2)取AC中點(diǎn)E,連結(jié)DE、C′E,由D為BC中點(diǎn),得DE∥AB,從而∠C′DE是異面直線AB與C′D所成角(或所成角的補(bǔ)角),由此能求出異面直線AB與C′D所成角的余弦值.
詳解:(1)∵在正三棱柱ABC﹣A′B′C′中,底面△ABC邊長(zhǎng)為2,D為BC的中點(diǎn),三棱柱體積,
解得高AA′=3,
∴三棱柱的表面積:= ;
(2)取AC中點(diǎn)E,連結(jié)DE、C′E,
∵D為BC中點(diǎn),∴DE∥AB,
∴∠C′DE是異面直線AB與C′D所成角(或所成角的補(bǔ)角),
∵DE=AB=1,C′D=C′E===,
∴cos∠C′DE===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列 中, .
(1)求證:數(shù)列 與 都是等比數(shù)列;
(2)若數(shù)列 的前 項(xiàng)和為 .令 ,求數(shù)列 的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列 滿足:,,;數(shù)列 滿足:.
(1)求數(shù)列 , 的通項(xiàng)公式;
(2)證明:數(shù)列 中的任意三項(xiàng)不可能成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=,AB=8,點(diǎn)D在BC邊上,且CD=2,cos∠ADC=.
(1)求sin ∠BAD;
(2)求BD,AC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) .
(1)求函數(shù) 的最大值;
(2)對(duì)于任意 ,且 ,是否存在實(shí)數(shù) ,使 恒成立,若存在求出 的范圍,若不存在,說(shuō)明理由;
(3)若正項(xiàng)數(shù)列 滿足 ,且數(shù)列 的前 項(xiàng)和為 ,試判斷 與 的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 , , .
(1)若 是 的充分不必要條件,求實(shí)數(shù) 的取值范圍;
(2)若 ,“ ”為真命題,“ ”為假命題,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 函數(shù) 在區(qū)間 上有1個(gè)零點(diǎn); 函數(shù) 圖象與 軸交于不同的兩點(diǎn).若“ ”是假命題,“ ”是真命題,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分.)
數(shù)列中{an},a1=8,a4=2,且滿足an+2= 2an+1- an,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn=,求Sn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,面為正方形,面為等腰梯形, , , , .
(I)求證: 平面.
(II)求與平面所成角的正弦值.
(III)線段上是否存在點(diǎn),使平面平面?證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com