【題目】如圖,A,BC三地有直道相通,其中ABBC為步行道,AC為機動車道,已知AB的正北方向6千米處,CB的正東方向千米處,某校開展步行活動,從A地出發(fā),經B地到達C地,中途不休息.

1)媒體轉播車從A出發(fā),沿AC行至點P處,此時,求PB的距離;

2)媒體記者隨隊步行,媒體轉播車從A地沿AC前往C,兩者同時出發(fā),步行的速度為6千米/小時,為配合轉播,轉播車的速度為12千米/小時,記者和轉播車通過專用對講機保持聯(lián)系,轉播車開到C地后原地等待,直到記者到達C地,若對講機的有效通話距離不超過9千米,求他們通過對講機能保持聯(lián)系的總時長.

【答案】1

2

【解析】

1)在中求出的值,再在中由正弦定理求解;

2)設步行時間為t小時,記者位于E,媒體車位于F,按照時,EAB上;時,EBC上兩種情況分類討論求得EF,再解不等式,即可.

解:(1)在中,,

,則,

中,由正弦定理得,

2)設步行時間為小時,記者位于E,媒體車位于F,

①當時,EAB上,,

由余弦定理可得

,

所以,

②當時,此時F在點C處,EBC上,且

,

,解得,

故他們通過對講機能保持聯(lián)系的總時長為

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某日A,B,C三個城市18個銷售點的小麥價格如下表:

銷售點序號

所屬城市

小麥價格(元/噸)

銷售點序號

所屬城市

小麥價格(元/噸)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(1)甲以B市5個銷售點小麥價格的中位數(shù)作為購買價格,乙從C市4個銷售點中隨機挑選2個了解小麥價格.記乙挑選的2個銷售點中小麥價格比甲的購買價格高的個數(shù)為,求的分布列及數(shù)學期望;

(2)如果一個城市的銷售點小麥價格方差越大,則稱其價格差異性越大.請你對A,B,C三個城市按照小麥價格差異性從大到小進行排序(只寫出結果).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)當時,求曲線在點處的切線方程;

)求的單調區(qū)間;

)若在區(qū)間上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx)的定義域為R,如果存在函數(shù)gx),使得fxgx)對于一切實數(shù)x都成立,那么稱gx)為函數(shù)fx)的一個承托函數(shù).已知函數(shù)fx=ax2+bx+c的圖象經過點(-1,0).

1)若a=1,b=2.寫出函數(shù)fx)的一個承托函數(shù)(結論不要求證明);

2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)fx)的一個承托函數(shù),且fx)為函數(shù)的一個承托函數(shù)?若存在,求出a,b,c的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以坐標原點為圓心的圓與拋物線相交于不同的兩點, ,與拋物線的準線相交于不同的兩點 ,且.

(1)求拋物線的方程;

(2)若不經過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足.證明直線過定點,并求出點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù))是定義域為的奇函數(shù).

(1)若,試求不等式的解集;

(2)若,且,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某通信公司為了配合客戶的不同需要,現(xiàn)設計A,B兩種優(yōu)惠方案,這兩種方案的應付話費y(元)與通話時間x(分鐘)之間的關系如圖所示(實線部分)(注:圖中MNCD)

1)若通話時間為2小時,則按方案A,B各付話費多少元?

2)方案B500分鐘以后,每分鐘收費多少元?

3)通話時間在什么范圍內,方案B才會比方案A優(yōu)惠?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)將, 的方程化為普通方程,并說明它們分別表示什么曲線?

(2)以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,已知直線的極坐標方程為.若上的點對應的參數(shù)為,點上,點的中點,求點到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020122日,國新辦發(fā)布消息:新型冠狀病毒來源于武漢一家海鮮市場非法銷售的野生動.專家通過全基因組比對發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達到70%40%的序列相似性.這種新型冠狀病毒對人們的健康生命帶來了嚴重威脅因此,某生物疫苗研究所加緊對新型冠狀病毒疫苗進行實驗,并將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如下:

未感染病毒

感染病毒

總計

未注射疫苗

20

注射疫苗

30

總計

50

50

100

現(xiàn)從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.

1)求列聯(lián)表中的數(shù)據(jù),,,的值;

2)能否有99.9%把握認為注射此種疫苗對預防新型冠狀病毒有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案