【題目】如圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是( )
A. 從2000年至2016年,該地區(qū)環(huán)境基礎設施投資額逐年增加;
B. 2011年該地區(qū)環(huán)境基礎設施的投資額比2000年至2004年的投資總額還多;
C. 2012年該地區(qū)基礎設施的投資額比2004年的投資額翻了兩番 ;
D. 為了預測該地區(qū)2019年的環(huán)境基礎設施投資額,根據2010年至2016年的數據(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據該模型預測該地區(qū)2019的環(huán)境基礎設施投資額為256.5億元.
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了2015年12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數,得到如表:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數y(顆) | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)若選取的是12月1日與12月5日的兩組數據,請根據12月2日至12月4日的數據,求出y關于x的線性回歸方程bx+a;
(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得到的線性回歸方程是否可靠?
,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年寒假是特殊的寒假,因為抗擊疫情全體學生只能在家進行網上在線學習,為了研究學生在網上學習的情況,某學校在網上隨機抽取120名學生對線上教育進行調查,其中男生與女生的人數之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯表,并回答能否有99%的把握認為對“線上教育是否滿意與性別有關”;
滿意 | 不滿意 | 總計 | |
男生 | 30 | ||
女生 | 15 | ||
合計 | 120 |
(2)從被調查的對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經驗介紹,其中抽取男生的個數為,求出的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的上頂點為A,以A為圓心,橢圓的長半軸為半徑的圓與y軸的交點分別為、.
(1)求橢圓的方程;
(2)設不經過點A的直線與橢圓交于P、Q兩點,且,試探究直線是否過定點?若過定點,求出該定點的坐標,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知焦點在x軸上的橢圓有一個內含圓x2+y2=,該圓的垂直于x軸的切線交橢圓于點M,N,且 (O為原點).
(1)求b的值;
(2)設內含圓的任意切線l交橢圓于點A、B.求證:,并求|AB|的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A.對具有線性相關關系的變量有一組觀測數據,其線性回歸方程是,且,則實數的值是
B.正態(tài)分布在區(qū)間和上取值的概率相等
C.若兩個隨機變量的線性相關性越強,則相關系數的值越接近于1
D.若一組數據的平均數是2,則這組數據的眾數和中位數都是2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系內,已知點,圓的方程為,點是圓上任意一點,線段的垂直平分線和直線相交于點.
(1)當點在圓上運動時,求點的軌跡方程;
(2)過點能否作一條直線,與點的軌跡交于兩點,且點為線段的中點?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com