如圖,四棱錐的底面是矩形,⊥平面,.

(1)求證:⊥平面;
(2)求二面角余弦值的大;
(3)求點(diǎn)到平面的距離.
(1) 見(jiàn)解析(2)(3)

試題分析:(1)證明:∵底面是矩形,,
∴底面是正方形,∴.
⊥平面平面,∴.
P平面,,∴⊥平面.
(2)解:∵底面是正方形,∴.
又∵⊥平面,∴.
P平面,∴⊥平面,
為二面角的平面角.
中,即求二面角余弦值為
(3)解:設(shè)點(diǎn)到平面的距離為,所以,
所以,即,解得
即點(diǎn)到平面的距離為
點(diǎn)評(píng):證明線面、面面間的位置關(guān)系時(shí),要緊扣判定定理,要注意靈活運(yùn)用性質(zhì)定理和判定定理,把定理要求的條件一一列舉出來(lái),缺一不可.求二面角時(shí),要先證后求,不能只求不證.求點(diǎn)到平面的距離時(shí),等體積法是常用的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,平面平面,,,中點(diǎn),中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)如圖,在直三棱柱中,,分 別是棱上的點(diǎn)(點(diǎn) 不同于點(diǎn)),且的中點(diǎn).

求證:(1)平面平面(2)直線平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長(zhǎng)為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動(dòng)點(diǎn).試探究點(diǎn)M的位置,使F—AE—M為直二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方體中,中點(diǎn),則與平面所成角的正弦值為           ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

三視圖如下的幾何體的體積為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題6分)已知圓臺(tái)的母線長(zhǎng)為4 cm,母線與軸的夾角為30°,上底面半徑是下底面半徑的,求這個(gè)圓臺(tái)的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正三棱錐內(nèi)有一個(gè)內(nèi)切球,經(jīng)過(guò)棱錐的一條側(cè)棱和高作截面,正確的圖是 (  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn)E, F,,

則下列結(jié)論中錯(cuò)誤的是 (   )
A.
B.
C.直線與平面所成的角為定值
D.異面直線所成的角為定值

查看答案和解析>>

同步練習(xí)冊(cè)答案