精英家教網 > 高中數學 > 題目詳情
比較下列各組數中的大小關系:?

(1)log112.3與log122.2;?

(2)log030.7與log212.9;?

(3)logab與logb(0<a<1)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•黃埔區(qū)一模)對于函數y=f(x)與常數a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“P數對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“類P數對”.設函數f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數,且(2,-2)是f(x)的一個“類P數對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黃埔區(qū)一模)對于函數y=f(x)與常數a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“P數對”.設函數f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數對”,求f(210);
(2)若(-2,0)是f(x)的一個“P數對”,且當x∈[1,2)時f(x)=k(2-x),求f(x)在區(qū)間[1,22n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數,且(2,-2)是f(x)的一個“P數對”,試比較下列各組中兩個式子的大小,并說明理由. ①f(2-n)與2-n+2(n∈N*);②f(x)與2x+2(x∈(2-n,21-n],n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數與常數,若恒成立,則稱為函數的一個“P數對”;若恒成立,則稱為函數的一個“類P數對”.設函數的定義域為,且

(1)若的一個“P數對”,求;

(2)若的一個“P數對”,且當,求在區(qū)間上的最大值與最小值;

(3)若是增函數,且的一個“類P數對”,試比較下列各組中兩個式子的大小,并說明理由.

+2;②

查看答案和解析>>

科目:高中數學 來源:2012-2013學年湖南省株洲二中高三(下)第十一次月考數學試卷(理科)(解析版) 題型:解答題

對于函數y=f(x)與常數a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“P數對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“類P數對”.設函數f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數,且(2,-2)是f(x)的一個“類P數對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數學 來源:2013年上海市黃浦區(qū)高考數學一模試卷(理科)(解析版) 題型:解答題

對于函數y=f(x)與常數a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“P數對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“類P數對”.設函數f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數,且(2,-2)是f(x)的一個“類P數對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

同步練習冊答案