【題目】直線y=﹣3x+4的斜率和在y軸上的截距分別是( )
A.﹣3,4B.3,﹣4C.﹣3,﹣4D.3,4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚(yáng)民族文化,某校舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì)制表,其中成績不低于80分的考生被評(píng)為優(yōu)秀生,請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計(jì)概率,回答下列問題.
分組 | 頻數(shù) | 頻率 |
5 | ||
35 | ||
25 | ||
15 | ||
合計(jì) | 100 |
(Ⅰ)求的值及隨機(jī)抽取一考生恰為優(yōu)秀生的概率;
(Ⅱ)按成績采用分層抽樣抽取20人參加學(xué)校的“我愛國學(xué)”宣傳活動(dòng),求其中優(yōu)秀生的人數(shù);
(Ⅲ)在第(Ⅱ)問抽取的優(yōu)秀生中指派2名學(xué)生擔(dān)任負(fù)責(zé)人,求至少一人的成績在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個(gè)零點(diǎn),求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為平行四邊形ABCD所在平面外一點(diǎn),MN分別為ABPC的中點(diǎn),平面PAD∩平面PBC=l.
(1)判斷BC與l的位置關(guān)系,并證明你的結(jié)論;
(2)判斷MN與平面PAD的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從中這個(gè)數(shù)中取個(gè)數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列這個(gè)數(shù)記為.
(1)當(dāng)時(shí),寫出所有可能的遞增等差數(shù)列及的值;
(2)求;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)M(-2,0),N(2,0),動(dòng)點(diǎn)P滿足條件|PM|-|PN|=2,記動(dòng)點(diǎn)P的軌跡為W.
⑴求W的方程;
⑵若A、B是W上的不同兩點(diǎn),O是坐標(biāo)原點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,(為自然對(duì)數(shù)的底數(shù)),且曲線與在坐標(biāo)原點(diǎn)處的切線相同.
(1)求的最小值;
(2)若時(shí),恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直三棱柱中,,,是棱上的一點(diǎn),分別為的中點(diǎn).
(1)求證:∥平面;
(2)當(dāng)為的中點(diǎn)時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)函數(shù)與軸交于兩點(diǎn)且,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com