(本小題滿分14分)
已知,圓C:,直線.
(1) 當(dāng)a為何值時(shí),直線與圓C相切;
(2) 當(dāng)直線與圓C相交于A、B兩點(diǎn),且時(shí),求直線的方程.

(1) . (2)直線的方程是. 

解析試題分析:將圓C的方程配方得標(biāo)準(zhǔn)方程為,則此圓的圓心為(0 , 4),半徑為2.             ……………………………2分
(1) 若直線與圓C相切,則有.  ………………4分
解得.          6分
(2) 解法一:過(guò)圓心C作CD⊥AB,    7分
則根據(jù)題意和圓的性質(zhì),得
     10分
解得.        12分
(解法二:聯(lián)立方程并消去,得
.
設(shè)此方程的兩根分別為、,則用即可求出a.)
∴直線的方程是.   14分
考點(diǎn):本題考查了直線與圓的位置關(guān)系
點(diǎn)評(píng):研究直線和圓的位置關(guān)系的相關(guān)問(wèn)題時(shí)通常采用“幾何法”即抓住圓心到直線的的距離與半徑的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,3),直線,設(shè)圓的半徑為1,圓心在上.

(1)若圓心也在直線上,過(guò)點(diǎn)A作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C的半徑為2,圓心在x軸的正半軸上,直線與圓C相切.
(I)求圓C的方程;
(II)過(guò)點(diǎn)Q(0,-3)的直線與圓C交于不同的兩點(diǎn)A、B,當(dāng)時(shí),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線經(jīng)過(guò)點(diǎn),且和圓相交,截得的弦長(zhǎng)為4,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:內(nèi)有一點(diǎn)P(2,2),過(guò)點(diǎn)P作直線交圓C于A、B兩點(diǎn)。
(1)當(dāng)經(jīng)過(guò)圓心C時(shí),求直線的方程;
(2)當(dāng)弦AB的長(zhǎng)為時(shí),寫(xiě)出直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓,圓

(1)若過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;
(2)設(shè)動(dòng)圓同時(shí)平分圓、圓的周長(zhǎng).
①求證:動(dòng)圓圓心在一條定直線上運(yùn)動(dòng);
②動(dòng)圓是否過(guò)定點(diǎn)?若過(guò),求出定點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知圓C:.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P()向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)
如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L垂直直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。

(Ⅰ)若∠PAB=30°,求以MN為直徑的圓方程;
(Ⅱ)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過(guò)圓O內(nèi)的一定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線,圓
(1)判斷直線和圓的位置關(guān)系;
(2)若直線和圓相交,求相交弦長(zhǎng)最小時(shí)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案