在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且(2b+c)cosA十a(chǎn)cosC =0。
(1)求角A的大小;
(2)求的最大值,并求取得最大值時(shí)角B、C的大�。�
(1);(2)
.
解析試題分析:(1)此類解三角形的問題,主要使用正余弦定理,將邊角互化,對(duì)于第一問,通過觀察,利用余弦定理,可將化簡(jiǎn),轉(zhuǎn)化成邊的關(guān)系,然后利用
,得到角A的大�。�
(2)通過公式,將角
轉(zhuǎn)化成角
,利用兩角和的正弦公式展開,化一,得到原式
,根據(jù)角
的范圍,結(jié)合三角函數(shù)的圖像,當(dāng)
時(shí),取得最大值,得到此時(shí)的角
的大小,此題屬于基礎(chǔ)題型.
試題解析:,所以由余弦定理得
,
化簡(jiǎn)整理得,由余弦定理得
, 4分
所以,即
,又
,所以
6分
(2)∵,∴
,
.
8分
∵,∴
,∴當(dāng)
,
取最大值
,此時(shí)
. 12分
考點(diǎn):三角函數(shù)的化簡(jiǎn)與求值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bsinA=acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,求a,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為繪制海底地貌圖,測(cè)量海底兩點(diǎn),
間的距離,海底探測(cè)儀沿水平方向在
,
兩點(diǎn)進(jìn)行測(cè)量,
,
,
,
在同一個(gè)鉛垂平面內(nèi). 海底探測(cè)儀測(cè)得
,
兩點(diǎn)的距離為
海里.
(1)求的面積;
(2)求,
之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量m=(
),n=(cosA,sinA).若m⊥n,且acosB+bcosA=csinC,則角B=____▲_____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com