【題目】已知曲線C的參數(shù)方程為 ( 為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l的極坐標(biāo)方程為 ,求直線l被曲線C截得的弦長.

【答案】
(1)解:∵曲線C的參數(shù)方程為 ( 為參數(shù)),

∴曲線C的普通方程為(x-2)2+(y-1)2=5,

將 ,代入并化簡得: .

即曲線C的極坐標(biāo)方程為 .


(2)解:∵l的直角坐標(biāo)方程為x+y-1=0,

∴圓心到直線l的距離為 ,∴弦長為 .


【解析】分析:本題主要考查了參數(shù)方程化成普通方程,解決問題的關(guān)鍵是(1)利用三角函數(shù)消參即可求得曲線C的普通方程,然后將 代入并化簡即可求得曲線C的極坐標(biāo)方程. (2)先將直線l的極坐標(biāo)方程化為普通方程,然后求出圓心到直線的距離d , 從而求得弦長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(2x+ )+tan cos2x.
(1)求f(x)的最小正周期及其圖象的對稱軸方程;
(2)求函數(shù)f(x)在區(qū)間(0, )上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=x3與y=( x2的圖象的交點(diǎn)為(x0 , y0),則x0所在的區(qū)間是(
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 為參數(shù)),
(1)當(dāng) 時,求 的交點(diǎn)坐標(biāo);
(2)以坐標(biāo)原點(diǎn) 為圓心的圓與 相切,切點(diǎn)為 , 的中點(diǎn),當(dāng) 變化時,求 點(diǎn)的軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,拋物線的方程為

(1)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求的極坐標(biāo)方程;

(2)直線的參數(shù)方程是為參數(shù)),交于兩點(diǎn), ,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=log (x2﹣4x﹣5)的單調(diào)遞減區(qū)間為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓x2+y2﹣2x﹣3=0的圓心坐標(biāo)及半徑分別為(
A.(﹣1,0)與
B.(1,0)與
C.(1,0)與2
D.(﹣1,0)與2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=sin(3x+ )的圖象,只需要把函數(shù)y=sin(x+ )的圖象上的所有點(diǎn)(
A.橫坐標(biāo)伸長為原來的3倍,縱坐標(biāo)不變
B.橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變
C.縱坐標(biāo)伸長為原來的3倍,橫坐標(biāo)不變
D.縱坐標(biāo)縮短為原來的 倍,橫坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司制定了一個激勵銷售人員的獎勵方案:當(dāng)銷售利潤不超過15萬元時,按銷售利潤的10%進(jìn)行獎勵;當(dāng)銷售利潤超過15萬元時,若超過部分為A萬元,則超出部分按2log5(A+1)進(jìn)行獎勵,沒超出部分仍按銷售利潤的10%進(jìn)行獎勵.記獎金總額為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出該公司激勵銷售人員的獎勵方案的函數(shù)表達(dá)式;
(2)如果業(yè)務(wù)員老張獲得5.5萬元的獎金,那么他的銷售利潤是多少萬元?

查看答案和解析>>

同步練習(xí)冊答案