【題目】電腦游戲中,“主角的生存機會往往被預先設定,如某槍戰(zhàn)游戲中,“主角被設定生存機會5,每次生存承受射擊8(被擊中8槍則失去一次生命機會).假設射擊過程均為單子彈發(fā)射,試為主角耗用生存機會的過程設計一個算法,并畫出程序框圖.

【答案】見解析

【解析】試題分析:(方法一)主角的所有生存機會共能承受8×5=40槍(第40槍被擊中,則生命結束).主角被擊中槍數(shù)為i,設計程序框圖如圖甲所示.

(方法二)電腦中預設共承受槍數(shù)為40,主角的生存機會以減數(shù)計數(shù),設計程序框圖如圖乙所示.

試題解析:

(方法一)主角的所有生存機會共能承受8×5=40槍(第40槍被擊中,則生命結束).主角被擊中槍數(shù)為i,程序框圖如圖甲所示.

(方法二)電腦中預設共承受槍數(shù)為40,主角的生存機會以減數(shù)計數(shù),程序框圖如圖乙所示.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等式:sin25°+cos235°+sin5°cos35°= ; sin215°+cos245°+sin15°cos45°= ; sin230°+cos260°+sin30°cos60°= ;由此可歸納出對任意角度θ都成立的一個等式,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了普及環(huán)保知識,增強學生的環(huán)保意識,在全校組織了一次有關環(huán)保知識的競賽.經(jīng)過初賽、復賽,甲、乙兩個代表隊(每隊3人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得10分,答錯得0分.假設甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 , ,且各人回答正確與否相互之間沒有影響,用ξ表示乙隊的總得分. (Ⅰ)求ξ的分布列和數(shù)學期望;
(Ⅱ)求甲、乙兩隊總得分之和等于30分且甲隊獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出這兩種魚各1 000,給每條魚做上不影響其存活的標記,然后放回池塘,待完全混合后,再每次從池塘中隨機地捕出1 000條魚,記錄下其中有記號的魚的數(shù)目,立即放回池塘中.這樣的記錄做了10,并將記錄獲取的數(shù)據(jù)制作成如圖所示的莖葉圖.

(1)根據(jù)莖葉圖計算有記號的鯉魚和鯽魚數(shù)目的平均數(shù),并估計池塘中的鯉魚和鯽魚的數(shù)量;

(2)為了估計池塘中魚的總質量,現(xiàn)按照(1)中的比例對100條魚進行稱重,根據(jù)稱重魚的質量介于[0,4.5](單位:千克)之間,將測量結果按如下方式分成九組:第一組[0,0.5),第二組[0.5,1),…,第九組[4,4.5].如圖是按上述分組方法得到的頻率分布直方圖的一部分.

估計池塘中魚的質量在3千克以上(3千克)的條數(shù);

若第三組魚的條數(shù)比第二組多7條、第四組魚的條數(shù)比第三組多7,請將頻率分布直方圖補充完整;

的條件下估計池塘中魚的質量的眾數(shù)及池塘中魚的總質量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,∠BAD=60°,AC∩BD=O,將菱形ABCD沿對角線AC折起,得到三棱錐B﹣ACD,點M是棱BC的中點,且DM=2
(1)求證:OM∥平面ABD;
(2)求證:平面DOM⊥平面ABC;
(3)求點B到平面DOM的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= + . (I)求f(x)的最大值;
(Ⅱ)若關于x的不等式f(x)≥|k﹣2|有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面是60名男生每分鐘脈搏跳動次數(shù)的頻率分布表.

分組

頻數(shù)

頻率

[51.5,57.5)

4

0.067

0.011

[57.5,63.5)

6

0.1

0.017

[63.5,69.5)

11

0.183

0.031

[69.5,75.5)

20

0.333

0.056

[75.5,81.5)

11

0.183

0.031

[81.5,87.5)

5

0.083

0.014

[87.5,93.5]

3

0.05

0.008

(1)作出其頻率分布直方圖;

(2)根據(jù)直方圖的各組中值估計總體平均數(shù);

(3)估計每分鐘脈搏跳動次數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是 .假設兩人射擊是否擊中目標相互之間沒有影響;每人各次射擊是否擊中目標相互之間也沒有影響.
(1)求甲射擊4次,至少有1次未擊中目標的概率;
(2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正實數(shù)x,y,z滿足x+y+z=1, + + =10,則xyz的最大值為

查看答案和解析>>

同步練習冊答案