【題目】用合適的方法表示下列集合,并說明是有限集還是無限集.

1)到AB兩點(diǎn)距離相等的點(diǎn)的集合

2)滿足不等式的集合

3)全體偶數(shù)

4)被5除余1的數(shù)

520以內(nèi)的質(zhì)數(shù)

6

7)方程的解集

【答案】1)集合點(diǎn),無限集;

2)集合,無限集;

3)集合,無限集;

4)集合,無限集;

5)集合,有限集;

6)集合,有限集;

7)集合,有限集.

【解析】

1)由題意可知,點(diǎn)滿足,用描述法表示該集合,即可.

2)用描述法表示該集合,即可.

3)由題意可知,偶數(shù)能被整除,用描述法表示該集合,即可.

4)用描述法表示該集合,即可.

5)由題意可知,20以內(nèi)的質(zhì)數(shù)有,,,,,,,用列舉法表示該集合,即可.

6)由題意可知,方程的解為,,,,用列舉法表示該集合,即可.

7)用描述法表示該集合,即可.

1)因?yàn)榈?/span>A、B兩點(diǎn)距離相等的點(diǎn)滿足,所以集合點(diǎn),無限集.

2)由題意可知,集合,無限集.

3)因?yàn)榕紨?shù)能被整除,所以集合,無限集.

4)由題意可知,集合,無限集.

5)因?yàn)?/span>20以內(nèi)的質(zhì)數(shù)有,,,,,.

所以集合,有限集.

6)因?yàn)?/span>,所以方程的解為,,,,所以集合,有限集.

7)由題意可知,集合,有限集.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn),右焦點(diǎn)分別為,右準(zhǔn)線為

(1)若直線上不存在點(diǎn),使為等腰三角形,求橢圓離心率的取值范圍;

(2)在(1)的條件下,當(dāng)取最大值時(shí),點(diǎn)坐標(biāo)為,設(shè)是橢圓上的三點(diǎn),且,求:以線段的中心為原點(diǎn),過兩點(diǎn)的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)且斜率為的直線與橢圓有兩個(gè)不同的交點(diǎn)

(1)求的取值范圍;

(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的奇偶性,并說明理由;

(2)若對(duì)于任意的恒成立,求滿足條件的實(shí)數(shù)m的最小值M .

(3)對(duì)于(2)中的M,正數(shù)ab滿足,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左,右焦點(diǎn)分別為 ,離心率為, 是橢圓上的動(dòng)點(diǎn),當(dāng)時(shí), 的面積為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過點(diǎn)的直線交橢圓 兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求上的最小值;

2)若,當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求此時(shí)實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,將收集的數(shù)據(jù)分成,,,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時(shí)間不低于40分鐘的學(xué)生評(píng)價(jià)為課外體育達(dá)標(biāo)

(1)請(qǐng)根據(jù)直方圖中的數(shù)據(jù)填寫下面的2×2列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為課外體育達(dá)標(biāo)與性別有關(guān)?

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

60

110

合計(jì)

(2)現(xiàn)按照課外體育達(dá)標(biāo)課外體育不達(dá)標(biāo)進(jìn)行分層抽樣,抽取8人,再從這8名學(xué)生中隨機(jī)抽取3人參加體育知識(shí)問卷調(diào)查,記課外體育不達(dá)標(biāo)的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.參考公式:

P(K2≥k0)

0.15

0.05

0.025

0.010

0.005

0.001

k0

2.072

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),為坐標(biāo)原點(diǎn).

(1)若的斜率為的中點(diǎn),且的斜率為,求橢圓的方程;

(2)連結(jié)并延長(zhǎng),交橢圓于點(diǎn),若橢圓的長(zhǎng)半軸長(zhǎng)是大于的給定常數(shù),求的面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,橢圓的四個(gè)頂點(diǎn)圍成的四邊形的面積為4.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)直線與橢圓交于 兩點(diǎn), 的中點(diǎn)在圓上,求為坐標(biāo)原點(diǎn))面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案