【題目】如圖1,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP的中點,將△PAD沿AD折起,使得PD⊥CD.
(Ⅰ)若E是PC的中點,求證:AP∥平面BDE;
(Ⅱ)求證:平面PCD⊥平面ABCD;
(Ⅲ)求二面角A﹣PB﹣C的大。
【答案】證明:(Ⅰ)連接AC交BD于點O,連接OE, 在正方形ABCD中,O為AC的中點,又因為E為PC的中點,
所以O(shè)E為△PAC的中位線,
所以O(shè)E∥AP,
又因為OE平面BDE,AP平面BDE,
所以AP∥平面BDE.
(Ⅱ)由已知可得AD⊥PD,AD⊥CD,
又因為PD∩CD=D,PD,CD平面PCD,
所以AD⊥平面PCD,
又因為AD平面ABCD,
所以平面PCD⊥平面ABCD.
解:(Ⅲ)由(Ⅱ)知AD⊥平面PCD,所以AD⊥PD,又因為PD⊥CD,且AD∩CD=D,
所以PD⊥平面ABCD,
所以以D為坐標原點,DA,DC,DP所在直線分別為x,y,z軸,建立空間直角坐標系,
則P(0,0,2),A(2,0,0),B(2,2,0),C(0,2,0),
所以 , ,
設(shè)平面APB的一個法向量為 ,
所以 即
令a=1,則c=1,從而 ,
同理可求得平面PBC的一個法向量為 ,
設(shè)二面角A﹣PB﹣C的大小為θ,易知 ,
所以 ,所以 ,
所以二面角A﹣PB﹣C的大小為 .
【解析】(Ⅰ)連接AC交BD于點O,連接OE,推導(dǎo)出OE∥AP,由此能證明AP∥平面BDE.(Ⅱ)推導(dǎo)出AD⊥PD,AD⊥CD,從而AD⊥平面PCD,由此能證明平面PCD⊥平面ABCD.(Ⅲ)以D為坐標原點,DA,DC,DP所在直線分別為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣PB﹣C的大。
【考點精析】利用直線與平面平行的判定和平面與平面垂直的判定對題目進行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩一種游戲,游戲規(guī)則如下:先將籌碼放在如下表的正中間D處,投擲一枚質(zhì)地均勻的硬幣,若正面朝上,籌碼向右移動一格;若反面朝上,籌碼向左移動一格.
A | B | C | D | E | F | G |
30 | 5 | 10 | 10 | 5 | 20 | 30 |
(1)將硬幣連續(xù)投擲三次,現(xiàn)約定:若籌碼停在A或B或C或D處,則甲贏;否則,乙贏.問該約定對乙公平嗎?請說明理由.
(2)設(shè)甲、乙兩人各有100個積分,籌碼停在D處,現(xiàn)約定: ①投擲一次硬幣,甲付給乙10個積分;乙付給甲的積分數(shù)是,按照上述游戲規(guī)則籌碼所在表中字母A﹣G下方所對應(yīng)的數(shù)目;
②每次游戲籌碼都連續(xù)走三步,之后重新回到起始位置D處.
你認為該規(guī)定對甲、乙二人哪一個有利,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b分別是△ABC內(nèi)角A,B的對邊,且bsin2A= acosAsinB,函數(shù)f(x)=sinAcos2x﹣sin2 sin 2x,x∈[0, ].
(Ⅰ)求A;
(Ⅱ)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1;
(3)設(shè)CU,DU,SC≥SD , 求證:SC+SC∩D≥2SD .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:x2+3y2=m2(m>0)的左頂點是A,左焦點為F,上頂點為B.
(1)當△AFB的面積為 時,求m的值;
(2)若直線l交橢圓E于M,N兩點(不同于A),以線段MN為直徑的圓過A點,試探究直線l是否過定點,若存在定點,求出這個定點的坐標,若不存在定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:x0∈(0,+∞),x0+ >3;命題q:x∈(2,+∞),x2>2x , 則下列命題為真的是( )
A.p∧(¬q)
B.(¬p)∧q
C.p∧q
D.(¬p)∨q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,a∈R.
(1)若a≠0,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若a=0,x1<x<x2<2,證明: > .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足an+1=an2﹣an+1(n∈N*),Sn為{an}的前n項和.證明:對任意n∈N* ,
(I)當0≤a1≤1時,0≤an≤1;
(II)當a1>1時,an>(a1﹣1)a1n﹣1;
(III)當a1= 時,n﹣ <Sn<n.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com