【題目】如圖所示,扇形,圓心角的大小等于,半徑為2,在半徑上有一動點,過點作平行于的直線交弧于點.
(1)若是半徑的中點,求線段的大;
(2)設(shè),求面積的最大值及此時的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)若,求的單調(diào)區(qū)間;
(2)若,求的極大值;
(3)若,指出的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的通項公式為an=﹣n+p,數(shù)列{bn}的通項公式為bn=2n﹣5 , 設(shè)cn= ,若在數(shù)列{cn}中c8>cn(n∈N* , n≠8),則實數(shù)p的取值范圍是( )
A.(11,25)
B.(12,16]
C.(12,17)
D.[16,17)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,其導(dǎo)函數(shù)為.
(1)設(shè),若函數(shù)在上有且只有一個零點,求的取值范圍;
(2)設(shè),且,點是曲線上的一個定點,是否存在實數(shù),使得成立?證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,an+1=1﹣ ,bn= ,其中n∈N* .
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)設(shè)cn=bn+1( ) ,數(shù)列{cn}的前n項和為Tn , 求Tn;
(3)證明:1+ + +…+ ≤2 ﹣1(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)曲線上一點的橫坐標(biāo)為,過的直線交于一點,交軸于點,過點作的垂線交于另一點,若是的切線,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的左、右焦點分別為F1 , F2 , 直線l經(jīng)過F2且交橢圓C于A,B兩點(如圖),△ABF1的周長為4 ,原點O到直線l的最大距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過F2作弦AB的垂線交橢圓C于M,N兩點,求四邊形AMBN面積最小時直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com