【題目】2018年1月22日,依照中國(guó)文聯(lián)及中國(guó)民間文藝家協(xié)會(huì)命名中國(guó)觀音文化之鄉(xiāng)的有關(guān)規(guī)定,中國(guó)文聯(lián)、中國(guó)民協(xié)正式命名四川省遂寧市為“中國(guó)觀音文化之鄉(xiāng)”.
下表為2014年至2018年觀音文化故里某土特產(chǎn)企業(yè)的線下銷售額(單位:萬元)
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
線下銷售額 | 90 | 170 | 210 | 280 | 340 |
為了解“祝福觀音、永保平安”活動(dòng)的支持度.某新聞?wù){(diào)查組對(duì)40位老年市民和40位年輕市民進(jìn)行了問卷調(diào)查(每位市民從“很支持”和“支持”中任選一種),其中很支持的老年市民有30人,支持的年輕市民有15人.
(1)從以上5年中任選2年,求其銷售額均超過200萬元的概率;
(2)請(qǐng)根據(jù)以上信息列出列聯(lián)表,并判斷能否有85%的把握認(rèn)為支持程度與年齡有關(guān).
附:,其中
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)(2)列聯(lián)表見解析,沒有85%的把握認(rèn)為支持程度與年齡有關(guān)
【解析】
(1)這是一個(gè)古典概型,分別記“2014年、2015年、2016年、2017年、2018年”為“”,先求得從以上5年中任選2年的基本事件的總數(shù),再找出銷售額均超過200萬元的基本事件數(shù),然后代入公式求解.
(2)根據(jù)對(duì)40位老年市民和40位年輕市民進(jìn)行了問卷調(diào)查,其中很支持的老年市民有30人,支持的年輕市民有15人,完成2×2列聯(lián)表.根據(jù)列表可以求得的觀測(cè)值,再與臨界表對(duì)比下結(jié)論.
(1)分別記“2014年、2015年、2016年、2017年、2018年”為“”
從以上5年中任選2年,其基本事件為:
,共10種,
其中銷售額均超過200萬元的有,共3種,
故其概率
(2)根據(jù)題意,整理數(shù)據(jù)得如下2×2列聯(lián)表:
年輕市民 | 老年市民 | 合計(jì) | |
支持 | 15 | 10 | 25 |
很支持 | 25 | 30 | 55 |
合計(jì) | 40 | 40 | 80 |
根據(jù)列表可以求得的觀測(cè)值:
因?yàn)?/span>1.455<2.072
所以沒有85%的把握認(rèn)為支持程度與年齡有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班隨機(jī)抽查了名學(xué)生的數(shù)學(xué)成績(jī),分?jǐn)?shù)制成如圖的莖葉圖,其中組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間不足個(gè)小時(shí),組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間達(dá)到一個(gè)小時(shí),學(xué)校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達(dá)標(biāo),分以下記為未達(dá)標(biāo).
(1)根據(jù)莖葉圖完成下面的列聯(lián)表:
達(dá)標(biāo) | 未達(dá)標(biāo) | 總計(jì) | |
組 | |||
組 | |||
總計(jì) |
(2)判斷是否有的把握認(rèn)為“數(shù)學(xué)成績(jī)達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時(shí)間能否達(dá)到一小時(shí)”有關(guān).
參考公式與臨界值表:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差大于0的等差數(shù)列的前n項(xiàng)和為,且滿足,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求的表達(dá)式;
(3)若,存在非零常數(shù),使得數(shù)列是等差數(shù)列,存在,不等式成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形和梯形所在的平面互相垂直,,,與交于點(diǎn),,分別為線段,的中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)若,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A、B兩種品牌各三種車型2017年7月的銷量環(huán)比(與2017年6月比較)增長(zhǎng)率如下表:
A品牌車型 | A1 | A2 | A3 | ||||
環(huán)比增長(zhǎng)率 | -7.29% | 10.47% | 14.70% | ||||
B品牌車型 | B1 | B2 | B3 | ||||
環(huán)比增長(zhǎng)率 | -8.49% | -28.06% | 13.25% | ||||
根據(jù)此表中的數(shù)據(jù),有如下關(guān)于7月份銷量的四個(gè)結(jié)論:①A1車型銷量比B1車型銷量多;
②A品牌三種車型總銷量環(huán)比增長(zhǎng)率可能大于14.70%;
③B品牌三款車型總銷量環(huán)比增長(zhǎng)率可能為正;
④A品牌三種車型總銷量環(huán)比增長(zhǎng)率可能小于B品牌三種車型總銷量環(huán)比增長(zhǎng)率.
其中正確結(jié)論的個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).
(1)若=0,求函數(shù)的單調(diào)區(qū)間;
(2)若,證明>0時(shí),<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年出現(xiàn)各種食品問題,食品添加劑會(huì)引起血脂增高、血壓增高、血糖增高等疾病.為了解三高疾病是否與性別有關(guān),醫(yī)院隨機(jī)對(duì)入院的60人進(jìn)行了問卷調(diào)查,得到了如圖的列聯(lián)表:
患三高疾病 | 不患三高疾病 | 合計(jì) | |
男 | 6 | 30 | |
女 | |||
合計(jì) | 36 |
(1)請(qǐng)將如圖的列聯(lián)表補(bǔ)充完整;若用分層抽樣的方法在患三高疾病的人群中抽人,其中女性抽多少人?
(2)為了研究三高疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,并說明你有多大的把握認(rèn)為三高疾病與性別有關(guān)?
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自古以來“民以食為天”,餐飲業(yè)作為我國(guó)第三產(chǎn)業(yè)中的一個(gè)支柱產(chǎn)業(yè),一直在社會(huì)發(fā)展與人民生活中發(fā)揮著重要作用.某機(jī)構(gòu)統(tǒng)計(jì)了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結(jié)論中不正確的是( )
A. 2010~2016年全國(guó)餐飲收入逐年增加
B. 2016年全國(guó)餐飲收入比2010年翻了一番以上
C. 2010~2016年全國(guó)餐飲收入同比增量最多的是2015年
D. 2010~2016年全國(guó)餐飲收入同比增量超過3000億元的年份有3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].從樣本成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,記這2人成績(jī)?cè)?0分以上(含90分)的人數(shù)為ξ,則ξ的數(shù)學(xué)期望為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com