【題目】對點的直線l分別交與于兩點.
(1)設(shè)的面積為,求直線l的方程;
(2)當最小時,求直線l的方程.
【答案】(1);
(2).
【解析】
(1)設(shè)所求直線l的方程,分別與直線與聯(lián)立,得出交點A、B的縱坐標,根據(jù)三角形的面積公式得出方程,求解可得所求直線的方程;
(2)設(shè)直線l的參數(shù)式方程,分別代入直線與中,得出、,從而得出,運用三角函數(shù)的恒等變形得出其最小值,由(1)得出交點的縱坐標可求解出滿足題意的值,得出直線的方程.
(1)設(shè),直線,
由化簡得A點的縱坐標,
由,化簡得B點的縱坐標,
所以,,化簡得,
故直線 的方程為:;
(2)設(shè)直線的傾斜角為,所以直線的參數(shù)方程為:( 為參數(shù)),
將直線的參數(shù)方程分別代入 與得:
,
所以,
由(1)得,,
當時,化簡得或,解得或.
因為點A在第一象限,所以,所以,所以,
所以直線.
故得解.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分) 已知雙曲線的兩個焦點為的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐A﹣BCD的所有棱長均相等,E為DC的中點,若點P為AC中點,則直線PE與平面BCD所成角的正弦值為_____,若點Q在棱AC所在直線上運動,則直線QE與平面BCD所成角正弦值的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的直角坐標方程及曲線上的動點到坐標原點的距離的最大值;
(Ⅱ)若曲線與曲線相交于,兩點,且與軸相交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】物價監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價格的合理性,對某公司的該產(chǎn)品的銷量與價格進行了統(tǒng)計分析,得到如下數(shù)據(jù)和散點圖:
定價x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=21ny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(參考數(shù)據(jù):,,
,)
(Ⅰ)根據(jù)散點圖判斷,y與x和z與x哪一對具有的線性相關(guān)性較強(給出判斷即可,不必說明理由)?
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是
A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務所需要的時間至少80分鐘
B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高
C. 這40名工人完成任務所需時間的中位數(shù)為80
D. 無論哪種生產(chǎn)方式的工人完成生產(chǎn)任務平均所需要的時間都是80分鐘.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面為菱形且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=,E為PC的中點.
(1)求直線DE與平面PAC所成角的大小;
(2)求二面角E-AD-C平面角的正切值;
(3)在線段PC上是否存在一點M,使PC⊥平面MBD成立.如果存在,求出MC的長;如果不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線C:1(a>0,b>0)的左右焦點為F1,F2(|F1F2|=2c),以坐標原點O為圓心,以c為半徑作圓A,圓A與雙曲線C的一個交點為P,若三角形F1PF2的面積為a2,則C的離心率為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com