【題目】已知x,y滿足: ,若目標(biāo)函數(shù)z=ax+y取最大值時(shí)的最優(yōu)解有無(wú)數(shù)多個(gè),則實(shí)數(shù)a的值是(
A.0
B.﹣1
C.±1
D.1

【答案】D
【解析】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分). 若a=0,則y=z,此時(shí)滿足條件最大值不存;
若a>0,由z=ax+y得y=﹣ax+z,
若a>0,∴目標(biāo)函數(shù)的斜率k=﹣a<0.
平移直線y=﹣ax+z,
由圖象可知當(dāng)直線 y=﹣ax+z和直線x+y=2平行時(shí),
此時(shí)目標(biāo)函數(shù)取得最大值時(shí)最優(yōu)解有無(wú)數(shù)多個(gè),
此時(shí)a=1滿足條件;
若a<0,目標(biāo)函數(shù)的斜率k=﹣a>0.
平移直線y=﹣ax+z,
由圖象可知直線y=﹣ax+z,此時(shí)目標(biāo)函數(shù)取得最大值只有一個(gè),
此時(shí)a<0不滿足條件.
故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在五面體ABCDEF中,四邊形ABCD是邊長(zhǎng)為2的正方形,EF∥平面ABCD,EF=1,F(xiàn)B=FC,∠BFC=90°,AE=
(1)求證:AB⊥平面BCF;
(2)求直線AE與平面BDE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,直線y= x(a≠0)為曲線y=f(x)的一條切線.
(1)求實(shí)數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣bx2為增函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列選項(xiàng)中說(shuō)法正確的是(
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量 滿足 ,則 的夾角為銳角
C.若am2≤bm2 , 則a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC的中點(diǎn),PO⊥平面ABCD,PO=1,M為PD的中點(diǎn). (Ⅰ)證明:PB∥平面ACM;
(Ⅱ)設(shè)直線AM與平面ABCD所成的角為α,二面角M﹣AC﹣B的大小為β,求sinαcosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且 .則使得sin2B+sin2C=msinBsinC成立的實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,集合M={0,1,2,3,4,5,6,7,8},現(xiàn)從M中任取兩個(gè)不同元素m,n,則f(m)f(n)=0的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】河南多地遭遇年霾,很多學(xué)校調(diào)整元旦放假時(shí)間,提前放假讓學(xué)生們?cè)诩叶泠玻嵵菔懈鶕?jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級(jí)為紅色預(yù)警的通知》,自12月29日12時(shí)將黃色預(yù)警升級(jí)為紅色預(yù)警,12月30日0時(shí)啟動(dòng)Ⅰ級(jí)響應(yīng),明確要求“幼兒園、中小學(xué)等教育機(jī)構(gòu)停課,停課不停學(xué)”.學(xué)生和家長(zhǎng)對(duì)停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的,某調(diào)查機(jī)構(gòu)為了了解公眾對(duì)該舉措的態(tài)度,隨機(jī)調(diào)查采訪了50人,將調(diào)查情況整理匯總成如表:

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

9

6

3

4


(Ⅰ)請(qǐng)?jiān)趫D中完成被調(diào)查人員年齡的頻率分布直方圖;
(Ⅱ)若從年齡在[25,35),[65,75]兩組采訪對(duì)象中各隨機(jī)選取2人進(jìn)行深度跟蹤調(diào)查,選中4人中不贊成這項(xiàng)舉措的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.
(1)設(shè)點(diǎn)E為PD的中點(diǎn),求證:CE∥平面PAB;
(2)線段PD上是否存在一點(diǎn)N,使得直線CN與平面PAC所成的角θ的正弦值為 ?若存在,試確定點(diǎn)N的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案