【題目】定義在上的函數(shù)滿(mǎn)足條件,且函數(shù)是偶函數(shù),當(dāng)時(shí), ;當(dāng)時(shí), 的最小值為,則=( )
A. B. C. D.
【答案】A
【解析】∵f(x+2)是偶函數(shù),∴f(x+2)=f(﹣x+2),
∴f(x)關(guān)于直線(xiàn)x=2對(duì)稱(chēng),
∴當(dāng)2≤x<4時(shí),f(x)=f(4﹣x)=ln(4﹣x)﹣a(4﹣x).
∵f(x+4)=﹣f(x),
∴當(dāng)﹣2≤x<0時(shí),f(x)=﹣f(x+4)=﹣ln[4﹣(x+4)]+a[4﹣(x+4)]=﹣ln(﹣x)﹣ax,
∴f′(x)=﹣﹣a,
令f′(x)=0得x=﹣,
∵a,∴﹣∈(﹣2,0),
∴當(dāng)﹣2≤x<﹣時(shí),f′(x)<0,當(dāng)﹣<x<0時(shí),f′(x)>0,
∴f(x)在[﹣2,﹣)上單調(diào)遞減,在(﹣,0)上單調(diào)遞增,
∴當(dāng)x=﹣時(shí),f(x)取得最小值f(﹣)=﹣ln+1,
∵f(x)在[﹣2,0)上有最小值3,
∴﹣ln()+1=3,解得a=e2.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公車(chē)私用、超編配車(chē)等現(xiàn)象一直飽受詬病,省機(jī)關(guān)事務(wù)管理局認(rèn)真貫徹落實(shí)黨中央、國(guó)務(wù)院有關(guān)公務(wù)用車(chē)配備使用管理辦法,積極推進(jìn)公務(wù)用車(chē)制度改革.某機(jī)關(guān)單位有車(chē)牌尾號(hào)為2的汽車(chē)A和尾號(hào)為6的汽車(chē)B,兩車(chē)分屬于兩個(gè)獨(dú)立業(yè)務(wù)部門(mén).為配合用車(chē)制度對(duì)一段時(shí)間內(nèi)兩輛汽車(chē)的用車(chē)記錄進(jìn)行統(tǒng)計(jì),在非限行日,A車(chē)日出車(chē)頻率0.6,B車(chē)日出車(chē)頻率0.5,該地區(qū)汽車(chē)限行規(guī)定如下:
車(chē)尾號(hào) | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
現(xiàn)將汽車(chē)日出車(chē)頻率理解為日出車(chē)概率,且A,B兩車(chē)出車(chē)情況相互獨(dú)立.
(1)求該單位在星期一恰好出車(chē)一臺(tái)的概率;
(2)設(shè)X表示該單位在星期一與星期二兩天的出車(chē)臺(tái)數(shù)之和,求X的分布列及其數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)實(shí)數(shù)m為何值時(shí),復(fù)數(shù)z= +(m2﹣2m)i為
(1)實(shí)數(shù)?
(2)虛數(shù)?
(3)純虛數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
(1)求證:f(x)在[﹣3,﹣2]上是增函數(shù);
(2)求f(x)得最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列類(lèi)比推理的結(jié)論正確的是( )
①類(lèi)比“實(shí)數(shù)的乘法運(yùn)算滿(mǎn)足結(jié)合律”,得到猜想“向量的數(shù)量積運(yùn)算滿(mǎn)足結(jié)合律”;
②類(lèi)比“平面內(nèi),同垂直于一直線(xiàn)的兩直線(xiàn)相互平行”,得到猜想“空間中,同垂直于一直線(xiàn)的兩直線(xiàn)相互平行”;
③類(lèi)比“設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 則S4 , S8﹣S4 , S12﹣S8成等差數(shù)列”,得到猜想“設(shè)等比數(shù)列{bn}的前n項(xiàng)積為T(mén)n , 則T4 , , 成等比數(shù)列”;
④類(lèi)比“設(shè)AB為圓的直徑,p為圓上任意一點(diǎn),直線(xiàn)PA,PB的斜率存在,則kPA . kPB為常數(shù)”,得到猜想“設(shè)AB為橢圓的長(zhǎng)軸,p為橢圓上任意一點(diǎn),直線(xiàn)PA,PB的斜率存在,則kPA . kPB為常數(shù)”.
A.①②
B.③④
C.①④
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.已知曲線(xiàn)C1: (t為參數(shù)),C2: (θ為參數(shù)).
(1)化C1 , C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);
(2)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t= ,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線(xiàn)C3:ρ(cosθ﹣2sinθ)=7距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB= =AC=2,E,F(xiàn)分別為A1C1 , BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)設(shè)A、B、C、D、E五門(mén)選修課,要求每位同學(xué)彼此獨(dú)立地從中選修3門(mén)課程.某甲同學(xué)必選A課程,不選B課程,另從其余課程中隨機(jī)任選兩門(mén)課程.乙、丙兩名同學(xué)從五門(mén)課程中隨機(jī)任選三門(mén)課程.
(1)求甲同學(xué)選中C課程且乙、丙同學(xué)未選C課程的概率;
(2)用X表示甲、乙、丙選中C課程的人數(shù)之和,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣|x+a|
(1)當(dāng)a=3時(shí),解不等式f(x)≤ ;
(2)若關(guān)于x的不等式f(x)≤a解集為R,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com