【題目】(本小題滿分10分)已知函數(shù)是偶函數(shù).

1)求實數(shù)的值;

2)設(shè), 有且只有一個實數(shù)解,求實數(shù)的取值范圍.

【答案】1. 2)的取值范圍是{}∪[1,).

【解析】

試題分析:(1)通過偶函數(shù)的定義,知,化簡得,進而求出。(2)通過分析得出題意可化為方程有且只有一個實根, ,有且只有一個正根,再通過,分三種情況、討論求的取值范圍。

試題解析:(1)由函數(shù)是偶函數(shù)可知:,

,

化簡得,

對一切恒成立,∴.

2)函數(shù)的圖象有且只有一個公共點,

即方程有且只有一個實根,

化簡得:方程有且只有一個實根,

成立,

,有且只有一個正根

設(shè),注意到,

所以, , 合題意;

,圖象開口向下,,則需滿足

,此時有;(舍去)

,,方程恒有一個正根與一個負根.

綜上可知,的取值范圍是{}∪[1,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直徑的圓,DC的延長線與AB的延長線交于點E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6 ,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.

(1)求a的值及集合A、B;

(2)設(shè)集合U=A∪B,求(CuA)∪(CuB)的所有子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,橢圓 )的離心率為,連接橢圓的四個頂點所形成的四邊形面積為

1)求橢圓的標準方程;

2)若橢圓上點到定點)的距離的最小值為1,求的值及點的坐標;

3)如圖,過橢圓的下頂點作兩條互相垂直的直線,分別交橢圓于點, ,設(shè)直線的斜率為,直線 分別與直線 交于點, .記, 的面積分別為, ,是否存在直線,使得?若存在,求出所有直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x+1)e2x , g(x)=aln(x+1)+ x2+(3﹣a)x+a(a∈R).
(1)當a=9,求函數(shù)y=g(x)的單調(diào)區(qū)間;
(2)若f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某石化集團獲得了某地深海油田區(qū)塊的開采權(quán),集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡(luò)點來布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見如表:

井號

1

2

3

4

5

6

坐標

鉆探深度(

2

4

5

6

8

10

出油量(

40

70

110

90

160

205

(參考公式和計算結(jié)果: ,

(1)號舊井位置線性分布,借助前組數(shù)據(jù)求得回歸直線方程為;求,并估計的預(yù)報值;

(2)現(xiàn)準備勘探新井,若通過1,3,5,7號并計算出的 的值(, 精確到)相比于(1)中的, ,且,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,且anan+1=2n , n∈N* , 則數(shù)列{an}的通項公式為(
A.an=( n1
B.an=( n
C.an=
D.an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的圖象過點(0,4),對任意x滿足f(3﹣x)=f(x),且f(1)=2.

(1)若f(x)在(a,2a﹣1)上單調(diào)遞減,求實數(shù)a的取值范圍.

(2)設(shè)函數(shù)h(x)=f(x)﹣(2t﹣3)x,其中t∈R,求h(x)在區(qū)間[0,1]上的最小值g (t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(x,﹣1), =(x﹣2,3), =(1﹣2x,6).
(1)若 ⊥(2 + ),求| |;
(2)若 <0,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案