【題目】已知正△ABC邊長為3,點M,N分別是ABAC邊上的點,ANBM1,如圖1所示.將△AMN沿MN折起到△PMN的位置,使線段PC長為,連接PB,如圖2所示.

(Ⅰ)求證:平面PMN⊥平面BCNM

(Ⅱ)若點D在線段BC上,且BD2DC,求二面角MPDC的余弦值.

【答案】(Ⅰ)見解析(Ⅱ)

【解析】

(Ⅰ)推導(dǎo)出ANMN,即PNMNPNNC,從而PN⊥平面BCNM,由此能證明平面PMN⊥平面BCNM

(Ⅱ)以N為坐標(biāo)原點,NMx軸,NCy軸,NPz軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角MPDC的余弦值.

解:(Ⅰ)證明:依題意,在△AMN中,AM2,AN1,∠A,

由余弦定理,,解得,

根據(jù)勾股定理得MN2+AN2AM2,∴ANMN,即PNMN

在圖2PNC中,PN1,NC2PC,

PC2PN2+NC2,∴PNNC,

MNNCN,∴PN⊥平面BCNM,

PN平面PMN,∴平面PMN⊥平面BCNM

(Ⅱ)解:以N為坐標(biāo)原點,NMx軸,NCy軸,NPz軸,

建立空間直角坐標(biāo)系,

P00,1),M,0,0),D,0),C0,2,0),

,0,﹣1),,0),

02,﹣1),,,0),

設(shè)平面MPD的一個法向量xy,z),

,取y1,得,13),

設(shè)平面PDC的法向量a,b,c),

,取a1,得1,2),

設(shè)二面角MPDC的平面角為θ,由圖知θ是鈍角,

cosθ

二面角MPDC的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F為拋物線的焦點,過點F的直線交拋物線于A,B兩點,其中Ax軸上方,O是坐標(biāo)原點,若,,則以AB為直徑的圓的標(biāo)準(zhǔn)方程為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天上有些恒星的亮度是會變化的,其中一種稱為造父(型)變星,本身體積會膨脹收縮造成亮度周期性的變化.第一顆被描述的經(jīng)典造父變星是在1784.

上圖為一造父變星的亮度隨時間的周期變化圖,其中視星等的數(shù)值越小,亮度越高,則此變星亮度變化的周期、最亮?xí)r視星等,分別約是(

A.5.5,3.7B.5.44.4C.6.5,3.7D.5.5,4.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知橢圓E經(jīng)過點,對稱軸為坐標(biāo)軸,焦點x軸上,離心率e.直線l的平分線,則橢圓E的方程是_____,l所在的直線方程是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子中裝有4個大小、形狀、手感完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4.現(xiàn)每次有放回地從中任意取出一個小球,直到標(biāo)有偶數(shù)的球都取到過就停止.小明用隨機(jī)模擬的方法估計恰好在第4次停止摸球的概率,利用計算機(jī)軟件產(chǎn)生隨機(jī)數(shù),每1組中有4個數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下21組隨機(jī)數(shù):由此可以估計恰好在第4次停止摸球的概率為(

1314 1234 2333 1224 3322 1413 3124 4321 2341 2413 1224 2143 4312

2412 1413 4331 2234 4422 3241 4331 4234

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與直線只有一個公共點,點是拋物線上的動點.

1)求拋物線的方程;

2)①若,求證:直線過定點;

②若是拋物線上與原點不重合的定點,且,求證:直線的斜率為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校高三大理班周三上午四節(jié)、下午三節(jié)有六門科目可供安排,其中語文和數(shù)學(xué)各自都必須上兩節(jié)而且兩節(jié)連上,而英語、物理、化學(xué)、生物最多上一節(jié),則不同的功課安排有________種情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將曲線方程,先向左平移2個單位,再向上平移2個單位,得到曲線C.

1)點Mx,y)為曲線C上任意一點,寫出曲線C的參數(shù)方程,并求出的最大值;

2)設(shè)直線l的參數(shù)方程為,(t為參數(shù)),又直線l與曲線C的交點為E,F,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求過線段EF的中點且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,的平分線,將沿直線翻折成,在翻折過程中,設(shè)所成二面角的平面角為,,則下列結(jié)論中成立的是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案