【題目】已知三個集合U,A,B及元素間的關(guān)系如圖所示,則(CUA)∩B=(
A.{5,6}
B.{3,5,6}
C.{3}
D.{0,4,5,6,7,8}

【答案】A
【解析】解:∵U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6}, ∴CUA={0,4,5,6,7,8},
∴(CUA)∩B={5,6},
故選A.
【考點精析】解答此題的關(guān)鍵在于理解交、并、補集的混合運算的相關(guān)知識,掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若關(guān)于x的方程f(f(x))=0有且只有一個實數(shù)解,則實數(shù)a的取值范圍是(
A.(﹣∞,0)
B.(﹣∞,0]∪(0,1)
C.(﹣∞,0)∪(0,1]
D.(﹣∞,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+1在x=﹣1與x=2處有極值.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)在[﹣2,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 的圖象過點(0,﹣1).
(1)求實數(shù)a的值;
(2)若f(x)=m+ (m,n是常數(shù)),求實數(shù)m,n的值;
(3)用定義法證明:函數(shù)f(x)在(3,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為[﹣1,5],部分對應(yīng)值如表,

x

﹣1

0

4

f(x)

1

2

2

f(x)的導(dǎo)函數(shù)y=f′(x)的圖象(該圖象關(guān)于(2,0)中心對稱) 如圖所示.
下列關(guān)于f(x)的命題:
①函數(shù)f(x)的極大值點為 0與4;
②函數(shù)f(x)在[0,2]上是減函數(shù);
③函數(shù)y=f(x)﹣a零點的個數(shù)可能為0、1、2、3、4個;
④如果當時x∈[﹣1,t],f(x)的最大值是2,那么t的最大值為5;.
⑤函數(shù)f(x)的圖象在a=1是上凸的
其中一定正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (a是常數(shù),且a>0).對于下列命題:①函數(shù)f(x)的最小值是﹣1;②函數(shù)f(x)在R上是單調(diào)函數(shù);③若f(x)>0在[ ,+∞)上恒成立,則a的取值范圍是a>1;④對任意x1<0,x2<0且x1≠x2 , 恒有f( )> .其中正確命題的序號是(
A.①②
B.①③
C.③④
D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一臺機器按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少,隨機器的運轉(zhuǎn)的速度而變化,具有線性相關(guān)關(guān)系,下表為抽樣試驗的結(jié)果:

轉(zhuǎn)速x(轉(zhuǎn)/秒)

8

10

12

14

16

每小時生產(chǎn)有缺點的零件數(shù)y(件)

5

7

8

9

11

參考公式: , = =
(1)如果y對x有線性相關(guān)關(guān)系,求回歸方程;
(2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺點的零件最多有10個,那么機器的運轉(zhuǎn)速度應(yīng)控制在設(shè)么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2n2+n,n∈N* , 數(shù)列{bn}滿足an=4log2bn+3,n∈N*
(1)求an , bn;
(2)求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[ ]表示不超過 的最大整數(shù).若 S1=[ ]+[ ]+[ ]=3,
S2=[ ]+[ ]+[ ]+[ ]+[ ]=10,
S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+[ ]=21,
…,
則Sn=(
A.n(n+2)
B.n(n+3)
C.(n+1)2﹣1
D.n(2n+1)

查看答案和解析>>

同步練習冊答案