【題目】已知函數(shù)的極小值為.
(1)求的單調(diào)區(qū)間;
(2)證明:(其中為自然對(duì)數(shù)的底數(shù)).
【答案】(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為(2)詳見(jiàn)解析
【解析】
(1)先由函數(shù)的極小值為,求出,利用導(dǎo)數(shù)的應(yīng)用,求函數(shù)單調(diào)區(qū)間即可;
(2)不等式恒成立問(wèn)題,通常采用最值法,方法一,令,可以證明,方法二,要證,即證,再構(gòu)造函數(shù)證明即可得解.
(1)由題得的定義域?yàn)?/span>,
,
令,解得,
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)方法一:要證,即證,
令,則,
當(dāng)時(shí),單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減.
所以.
由題知.
因?yàn)?/span>,
所以,即.
方法二:由(1)知.
解得,要證,即證.
當(dāng)時(shí),易知.
令,則.
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
所以,即.
令,則,
所以在區(qū)間內(nèi)單調(diào)遞增,
所以,即,
所以,
則當(dāng)時(shí),
,
所以.
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)于定義在上的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù)使得對(duì)任意實(shí)數(shù)都成立,則稱(chēng)是一個(gè)“特征函數(shù)”.下列結(jié)論中正確的個(gè)數(shù)為( 。
①是常數(shù)函數(shù)中唯一的“特征函數(shù)”;
②不是“特征函數(shù)”;
③“特征函數(shù)”至少有一個(gè)零點(diǎn);
④是一個(gè)“特征函數(shù)”.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列說(shuō)法:
(1)命題“若、都是奇數(shù),則是偶數(shù)”的否命題是“若、都不是奇數(shù),則不是偶數(shù)”;
(2)命題“如果,那么”是真命題;
(3)“或”是“”的必要不充分條件.
那么其中正確的說(shuō)法有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】黃金分割起源于公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,公元前世紀(jì),古希臘數(shù)學(xué)家歐多克索斯第一個(gè)系統(tǒng)研究了這一問(wèn)題,公元前年前后歐幾里得撰寫(xiě)《幾何原本》時(shí)吸收了歐多克索斯的研究成果,進(jìn)一步系統(tǒng)論述了黃金分割,成為最早的有關(guān)黃金分割的論著.黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,把稱(chēng)為黃金分割數(shù). 已知雙曲線的實(shí)軸長(zhǎng)與焦距的比值恰好是黃金分割數(shù),則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與軸交于點(diǎn),與曲線交于點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,解不等式;
(Ⅱ)若不等式至少有一個(gè)負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)每年暑假舉行“學(xué)科思維講座”活動(dòng),每場(chǎng)講座結(jié)束時(shí),所有聽(tīng)講者都要填寫(xiě)一份問(wèn)卷調(diào)查.2017年暑假某一天五場(chǎng)講座收到的問(wèn)卷分?jǐn)?shù)情況如下表:
用分層抽樣的方法從這一天的所有問(wèn)卷中抽取300份進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
(1)估計(jì)這次講座活動(dòng)的總體滿(mǎn)意率;
(2)求聽(tīng)數(shù)學(xué)講座的甲某的調(diào)查問(wèn)卷被選中的概率;
(3)若想從調(diào)查問(wèn)卷被選中且填寫(xiě)不滿(mǎn)意的人中再隨機(jī)選出5人進(jìn)行家訪,求這5人中選擇的是理綜講座的人數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位決定投資3200元建一倉(cāng)庫(kù)(長(zhǎng)方體狀),高度恒定,它的后墻利用舊墻不花錢(qián),正面用鐵柵,每米長(zhǎng)造價(jià)40元,兩側(cè)墻砌磚,每米長(zhǎng)造價(jià)45元,頂部每平方米造價(jià)20元,求:
(1)倉(cāng)庫(kù)頂部面積的最大允許值是多少?
(2)為使達(dá)到最大,而實(shí)際投資又不超過(guò)預(yù)算,那么正面鐵柵應(yīng)設(shè)計(jì)為多長(zhǎng)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com