【題目】某項競賽分為初賽、復賽、決賽三個階段進行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復賽、決賽的概率分別是且各階段通過與否相互獨立.

(1)求該選手在復賽階段被淘汰的概率;

(2)設該選手在競賽中回答問題的個數(shù)為ξ,求ξ的分布列與均值.

【答案】(1) (2) ξ的分布列為:

ξ

1

2

3

P

Eξ=2

【解析】試題分析:1選手在復賽階段被淘汰的概率P=PA ,分別求出PA=PB= ,代入公式P=PA =PAP得到結(jié)果。(2)根據(jù)題意得到Pξ=1= ,Pξ=2= ,Pξ=3=,再根據(jù)期望公式得到結(jié)果。

解析:

1)解:記該選手通過初賽為事件A該選手通過復賽為事件B,該選手通過決賽為事件C,則PA=,PB= PC=

那么該選手在復賽階段被淘汰的概率P=PA =PAP=

2)解:ξ可能取值為1,23

Pξ=1=1= ,

Pξ=2=

Pξ=3= +=

ξ的分布列為:

ξ

1

2

3

P

Eξ=1 +2 +3 =2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,…,第五組,如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為(  )

A. 6 B. 8

C. 12 D. 18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin x,g(x)=mx (m為實數(shù)).

(1)求曲線yf(x)在點處的切線方程;

(2)求函數(shù)g(x)的單調(diào)遞減區(qū)間;

(3)若m=1,證明:當x>0時,f(x)<g(x)+.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點.

(1)求證:MN//平面ACC1A1;

(2)求點N到平面MBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為, ,直線交橢圓 兩點, 的周長為16, 的周長為12.

1)求橢圓的標準方程與離心率;

(2)若直線與橢圓交于兩點,且是線段的中點,求直線的一般方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“ 兩項作品未獲得一等獎”;

丁說:“作品獲得一等獎”.

若這四位同學只有兩位說的話是對的,則獲得一等獎的作品是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.

(1)若直線與和圖象均相切,求直線的方程;

(2)是否存在使得按某種順序組成等差數(shù)列?若存在,這樣的有幾個?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù), .

1求證: ;

2若存在,使,的取值范圍;

3若對任意的恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是各項均為正數(shù)的等比數(shù)列,且b1a11,b3a4b1b2b3a3a4.

(1)求數(shù)列{an},{bn}的通項公式;

(2)cnanbn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

同步練習冊答案