【題目】抽樣調(diào)查某大型機(jī)器設(shè)備使用年限x和該年支出維修費(fèi)用y(萬元),得到數(shù)據(jù)如表

使用年限x

2

3

4

5

6

維修費(fèi)用y

2.2

3.8

5.5

6.5

7.0

部分?jǐn)?shù)據(jù)分析如下 =25, yi=112.3, =90
參考公式:線性回歸直線方程為 ,
(1)求線性回歸方程;
(2)由(1)中結(jié)論預(yù)測第10年所支出的維修費(fèi)用.

【答案】
(1)解:由題意得 =4, =5, yi=112.3, =90,

所以 = =1.23, =5﹣1.23×4=0.08,

即線性回歸方程為 =1.23x+0.08


(2)解:當(dāng)x=10時, =1.23×10+0.08=12.38(萬元)

即估計(jì)使用10年時維修費(fèi)用是12.38萬元


【解析】(1)根據(jù)所給的數(shù)據(jù),做出變量x,y的平均數(shù),根據(jù)最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程;(2)當(dāng)自變量為10時,代入線性回歸方程,求出維修費(fèi)用,這是一個預(yù)報值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知集合A={ x|x2﹣1=0 },B={ x|ax﹣1=0 },A∪B=A,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知四棱柱的底面是邊長為的菱形,且, 平面, ,設(shè)的中點(diǎn)。

(Ⅰ)求證: 平面

(Ⅱ)點(diǎn)在線段上,且平面,

求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4 cosθ.
(1)求C1與C2交點(diǎn)的直角坐標(biāo);
(2)已知曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0),C3與C1相交于點(diǎn)P,C2與C3相交于點(diǎn)Q,且|PQ|=8,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)若 ,且 , ,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

(1)討論函數(shù)極值點(diǎn)的個數(shù),并說明理由;

(2)若成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一曲線C是與兩個定點(diǎn)O(0,0),A(3,0)的距離比為 的點(diǎn)的軌跡.
(1)求曲線C的方程,并指出曲線類型;
(2)過(﹣2,2)的直線l與曲線C相交于M,N,且|MN|=2 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.

(1)求證:PA∥平面BDE;
(2)求證:PB⊥平面DEF.

查看答案和解析>>

同步練習(xí)冊答案