如圖,在四棱錐中,底面為菱形,,的中點.

(1)若,求證:平面平面;

(2)點在線段上,,若平面平面,且,求二面角的大小.

 

【答案】

(1)詳見解析;(2).

【解析】

試題分析:(1)由直線與平面內(nèi)的兩條相交直線垂直可證平面,又由平面,根據(jù)一個平面經(jīng)過另外一個平面的一條垂線,則這兩個平面垂直,因此有平面平面;(2)先證平面.以為坐標原點,分別以軸建立空間直角坐標系,,求平面與平面的一個法向量,根據(jù)公式,利用向量法求解.

試題解析:(1)由題條件,平面

平面平面平面.                    5分

(2),的中點,

又平面平面,平面平面,

平面.

為坐標原點,分別以、、、軸建立空間直角坐標系,,則

,,,

,                      9

是平面的一個法向量,則,即,令,

是平面的一個法向量,

,

故二面角的大小為.                          12分 

考點:空間中的線線、線面垂直,二面角的求法.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2010-2011年廣西省桂林中學高二下學期期中考試數(shù)學 題型:解答題

((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知


(1)證明平面;
(2)求異面直線所成的角的大;
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆福建省三明市高三第一學期測試理科數(shù)學試卷 題型:解答題

如圖,在四棱錐中,底面是菱形,,,平面,的中點,的中點.    

(Ⅰ) 求證:∥平面;

(Ⅱ)求證:平面⊥平面;

(Ⅲ)求平面與平面所成的銳二面角的大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆上海市高二年級期終考試數(shù)學 題型:解答題

(本題滿分16分)

如圖,在四棱錐中,底面是矩形.已知

(1)證明平面;

(2)求異面直線所成的角的大小;

(3)求二面角的大。

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高二下學期期末考試附加卷數(shù)學卷 題型:解答題

如圖,在四棱錐中,底面是正方形,側棱中點,作

(1)求PF:FB的值

(2)求平面與平面所成的銳二面角的正弦值。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學理 題型:解答題

(本小題滿分14分)

如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

(Ⅰ)當時,求證平面

(Ⅱ)當二面角的大小為時,求直線與平面所成角的正弦值.

 

 

查看答案和解析>>

同步練習冊答案