【題目】已知圓與圓關(guān)于直線對(duì)稱(chēng),且點(diǎn)在圓上.

1判斷圓與圓的位置關(guān)系;

2設(shè)為圓上任意一點(diǎn),,,三點(diǎn)不共線,的平分線,且交. 求證:的面積之比為定值.

【答案】1圓與圓相離;2定值為2.

【解析】

試題分析:1若兩圓關(guān)于直線對(duì)稱(chēng),則圓心關(guān)于直線對(duì)稱(chēng),并且兩圓的半徑相等,可先求得圓M的圓心,,然后根據(jù)圓心距與半徑和比較大小,從而判斷圓與圓的位置關(guān)系2因?yàn)辄c(diǎn)G到AP和BP的距離相等,所以?xún)蓚(gè)三角形的面積比值,根據(jù)點(diǎn)P在圓M上,代入兩點(diǎn)間距離公式求,最后得到其比值.

試題解析:1 的圓心關(guān)于直線對(duì)稱(chēng)點(diǎn)為,

,

的方程為.

,與圓相離.

2 設(shè),則

,

,.

的角平分線上一點(diǎn),的距離相等,

為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)=1時(shí),求函數(shù)在區(qū)間[-2,3]上的值域;

(2)函數(shù)上具有單調(diào)性,求實(shí)數(shù)的取值范圍;

(3)求函數(shù)上的最小值的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),如果滿(mǎn)足:對(duì)任意,存在常數(shù),都有成立,則稱(chēng)上的有界函數(shù),其中稱(chēng)為函數(shù)的上界.已知函數(shù),.

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;

(2)當(dāng)時(shí),判斷函數(shù)的奇偶性并證明,并判斷是否有上界,并說(shuō)明理由;

,函數(shù)上的上界是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于函數(shù)fx,若存在x0,使fx0x0成立,則稱(chēng)x0為函數(shù)fx的不動(dòng)點(diǎn)。已知fxx2bxc.

1fx有兩個(gè)不動(dòng)點(diǎn)為-3,2,求函數(shù)fx的零點(diǎn).

2當(dāng)cb2時(shí),函數(shù)fx沒(méi)有不動(dòng)點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖,其中成績(jī)分組區(qū)間如下:

組號(hào)

第一組

第二組

第三組

第四組

第五組

分組

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)。

(1)若曲線在點(diǎn)處的切線與直線垂直,求的單調(diào)遞減區(qū)間和極小值(其中為自然對(duì)數(shù)的底數(shù));

(2)若對(duì)任意恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng),男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表;

(2)是否有97.5%的把握認(rèn)為性別與休閑方式有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】算法的三種基本結(jié)構(gòu)是( )

A. 順序結(jié)構(gòu)、模塊結(jié)構(gòu)、條件結(jié)構(gòu) B. 順序結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、模塊結(jié)構(gòu)

C. 順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu) D. 模塊結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出盒該產(chǎn)品獲利潤(rùn)元;未售出的產(chǎn)品,每盒虧損.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了盒該產(chǎn)品,以(單位:盒, )表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn).

1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的中位數(shù);

2)將表示為的函數(shù);

3)根據(jù)直方圖估計(jì)利潤(rùn)不少于元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案