【題目】在我國,大學(xué)生就業(yè)壓力日益嚴(yán)峻,伴隨著政府政策引導(dǎo)與社會觀念的轉(zhuǎn)變,大學(xué)生創(chuàng)業(yè)意識,就業(yè)方向也悄然發(fā)生轉(zhuǎn)變.某大學(xué)生在國家提供的稅收,擔(dān)保貸款等很多方面的政策扶持下選擇加盟某專營店自主創(chuàng)業(yè),該專營店統(tǒng)計(jì)了近五年來創(chuàng)收利潤數(shù)(單位:萬元)與時間(單位:年)的數(shù)據(jù),列表如下:

(Ⅰ)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合的關(guān)系,請計(jì)算相關(guān)系數(shù)并加以說明(計(jì)算結(jié)果精確到).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);

附:相關(guān)系數(shù)公式

參考數(shù)據(jù).

(Ⅱ)該專營店為吸引顧客,特推出兩種促銷方案.

方案一:每滿元可減元;

方案二:每滿元可抽獎一次,每次中獎的概率都為,中獎就可以獲得元現(xiàn)金獎勵,假設(shè)顧客每次抽獎的結(jié)果相互獨(dú)立.

①某位顧客購買了元的產(chǎn)品,該顧客選擇參加兩次抽獎,求該顧客獲得元現(xiàn)金獎勵的概率.

②某位顧客購買了元的產(chǎn)品,作為專營店老板,是希望該顧客直接選擇返回元現(xiàn)金,還是選擇參加三次抽獎?說明理由.

【答案】(Ⅰ)見解析;

(Ⅱ)①;②見解析.

【解析】

(Ⅰ)先由題求得t和y的平均數(shù),再利用相關(guān)系數(shù)公式求得r,可得結(jié)果;

(Ⅱ)①顧客選擇參加兩次抽獎的概率為,②先求得選擇三次抽獎的期望,再與選擇不抽獎進(jìn)行比較可得結(jié)果.

(Ⅰ)由題

yt的線性相關(guān)程度很高,可用線性線性回歸模型擬合

(Ⅱ)①顧客選擇參加兩次抽獎,設(shè)他獲得100元現(xiàn)金獎勵為事件A.

②設(shè)X表示顧客在三次抽獎中中獎的次數(shù),由于顧客每次抽獎的結(jié)果相互獨(dú)立,則

所以

由于顧客每中一次可獲得100元現(xiàn)金獎勵,因此該顧客在三次抽獎中可獲得的獎勵金額的均值為

由于顧客參加三次抽獎獲得現(xiàn)金獎勵的均值120小于直接返現(xiàn)的150元,所以專營店老板希望顧客參加抽獎

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn),為直線上的動點(diǎn),過的垂線,該垂線與線段的垂直平分線交于點(diǎn),記的軌跡為.

(1)求的方程;

(2)若過的直線與曲線交于,兩點(diǎn),直線,與直線分別交于,兩點(diǎn),試判斷以為直徑的圓是否經(jīng)過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩陣乘法運(yùn)算的幾何意義為平面上的點(diǎn)在矩陣的作用下變換成點(diǎn),記,且.

1)若平面上的點(diǎn)在矩陣的作用下變換成點(diǎn),求點(diǎn)的坐標(biāo);

2)若平面上相異的兩點(diǎn)、在矩陣的作用下,分別變換為點(diǎn)、,求證:若點(diǎn)為線段上的點(diǎn),則點(diǎn)的作用下的點(diǎn)在線段上;

3)已知的頂點(diǎn)坐標(biāo)為、、,且在矩陣作用下變換成,記的面積分別為,求的值,并寫出一般情況(三角形形狀一般化且變換矩陣一般化)下的關(guān)系(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了

C. 2015年與2018年藝體達(dá)線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體中,點(diǎn)E是棱上的一個動點(diǎn),若平面交棱于點(diǎn)F,給出下列命題:

①四棱錐的體積恒為定值;

②對于棱上任意一點(diǎn)E,在棱上均有相應(yīng)的點(diǎn)G,使得平面;

O為底面對角線的交點(diǎn),在棱上存在點(diǎn)H,使平面;

④存在唯一的點(diǎn)E,使得截面四邊形的周長取得最小值.

其中為真命題的是____________________.(填寫所有正確答案的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓.

(Ⅰ)是拋物線的焦點(diǎn),是拋物線上的定點(diǎn),,求拋物線的方程;

(Ⅱ)在(Ⅰ)的條件下,過點(diǎn)的直線與圓相切,設(shè)直線交拋物線,兩點(diǎn),則在軸上是否存在點(diǎn)使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,且,.

1)證明:平面平面

2)若點(diǎn)的中點(diǎn),求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxx+1.

1)求曲線y=fx)在點(diǎn)(1,f1))處的切線方程:

2)若非零實(shí)數(shù)a使得fxaxax2x∈[1,+)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某共享單車經(jīng)營企業(yè)欲向甲市投放單車,為制定適宜的經(jīng)營策略,該企業(yè)首先在已投放單車的乙市進(jìn)行單車使用情況調(diào)查.調(diào)查過程分隨機(jī)問卷、整理分析及開座談會三個階段.在隨機(jī)問卷階段,A,B兩個調(diào)查小組分赴全市不同區(qū)域發(fā)放問卷并及時收回;在整理分析階段,兩個調(diào)查小組從所獲取的有效問卷中,針對15至45歲的人群,按比例隨機(jī)抽取了300份,進(jìn)行了數(shù)據(jù)統(tǒng)計(jì),具體情況如下表:

組別

年齡

A組統(tǒng)計(jì)結(jié)果

B組統(tǒng)計(jì)結(jié)果

經(jīng)常使用單車

偶爾使用單車

經(jīng)常使用單車

偶爾使用單車

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分層抽樣的方法從上述300人中按“年齡是否達(dá)到35歲”抽出一個容量為60人的樣本,再用分層抽樣的方法將“年齡達(dá)到35歲”的被抽個體數(shù)分配到“經(jīng)常使用單車”和“偶爾使用單車”中去.求這60人中“年齡達(dá)到35歲且偶爾使用單車”的人數(shù);

(2)從統(tǒng)計(jì)數(shù)據(jù)可直觀得出“是否經(jīng)常使用共享單車與年齡(記作歲)有關(guān)”的結(jié)論.在用獨(dú)立性檢驗(yàn)的方法說明該結(jié)論成立時,為使犯錯誤的概率盡可能小,年齡應(yīng)取25還是35?請通過比較的觀測值的大小加以說明.

參考公式:,其中.

查看答案和解析>>

同步練習(xí)冊答案