【題目】某高校為了對(duì)2018年錄取的大一理工科新生有針對(duì)性地進(jìn)行教學(xué),從大一理工科新生中隨機(jī)抽取40名,對(duì)他們2018年高考的數(shù)學(xué)分?jǐn)?shù)進(jìn)行分析,研究發(fā)現(xiàn)這40名新生的數(shù)學(xué)分?jǐn)?shù)在內(nèi),且其頻率滿足(其中,).
(1)求的值;
(2)請(qǐng)畫(huà)出這20名新生高考數(shù)學(xué)分?jǐn)?shù)的頻率分布直方圖,并估計(jì)這40名新生的高考數(shù)學(xué)分?jǐn)?shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查4名該校的大一理工科新生,記調(diào)查的4名大一理工科新生中“高考數(shù)學(xué)分?jǐn)?shù)不低于130分”的人數(shù)為隨機(jī)變量,求的數(shù)學(xué)期望.
【答案】(1);(2)120;(3)見(jiàn)解析.
【解析】
(1)由題意知:,所以的取值為10,11,12,13,14,
代入,由頻率和等于1可求的值;
(2)由(1),得,可得頻率分布直方圖如圖:
3)由題意可知,,且“高考數(shù)學(xué)分?jǐn)?shù)不低于130分”的概率為,所以~ ,可求的數(shù)學(xué)期望.
(1)由題意知:,所以的取值為10,11,12,13,14,
代入,可得,
解得.
(2)由(1),得,頻率分布直方圖如圖:
這40名新生的高考數(shù)學(xué)分?jǐn)?shù)的平均數(shù)為.
(3)由題意可知,,且“高考數(shù)學(xué)分?jǐn)?shù)不低于130分”的概率為,所以~
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)產(chǎn)值在2008年~2017年的年增量(即當(dāng)年產(chǎn)值比前一年產(chǎn)值增加的量)統(tǒng)計(jì)圖如圖所示(單位:萬(wàn)元),下列說(shuō)法正確的是( )
A. 2009年產(chǎn)值比2008年產(chǎn)值少
B. 從2011年到2015年,產(chǎn)值年增量逐年減少
C. 產(chǎn)值年增量的增量最大的是2017年
D. 2016年的產(chǎn)值年增長(zhǎng)率可能比2012年的產(chǎn)值年增長(zhǎng)率低
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為升;
(1)將表示為的函數(shù);
(2)若,求總用氧量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)P1,P2,…,P6為單位圓上逆時(shí)針均勻分布的六個(gè)點(diǎn).現(xiàn)任選其中三個(gè)不同點(diǎn)構(gòu)成一個(gè)三角形,記該三角形的面積為隨機(jī)變量S.
(1)求S=的概率;
(2)求S的分布列及數(shù)學(xué)期望E(S).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為圓上一點(diǎn),軸于點(diǎn),軸于點(diǎn),點(diǎn)滿足(為坐標(biāo)原點(diǎn)),點(diǎn)的軌跡為曲線.
(Ⅰ)求的方程;
(Ⅱ)斜率為的直線交曲線于不同的兩點(diǎn)、,是否存在定點(diǎn),使得直線、的斜率之和恒為0.若存在,則求出點(diǎn)的坐標(biāo);若不存在,則請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)若關(guān)于的方程有三個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com