已知等差數(shù)列的前項(xiàng)和為,且,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足:,的前n項(xiàng)和為.
(1)求及;
(2)已知數(shù)列的第n項(xiàng)為,若成等差數(shù)列,且,設(shè)數(shù)列的前項(xiàng)和.求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均為正數(shù)的兩個(gè)無窮數(shù)列、滿足.
(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)、都是公差不為0的等差數(shù)列,求證:數(shù)列有無窮多個(gè),而數(shù)列惟一確定;
(Ⅲ)設(shè),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
下面四個(gè)圖案,都是由小正三角形構(gòu)成,設(shè)第n個(gè)圖形中所有小正三角形邊上黑點(diǎn)的總數(shù)為.
圖1 圖2 圖3 圖4
(1)求出,,,;
(2)找出與的關(guān)系,并求出的表達(dá)式;
(3)求證:().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的通項(xiàng)公式為,從數(shù)列{an}中依次取出a1,a2,a4,a8,…,,…,構(gòu)成一個(gè)新的數(shù)列{bn},求{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{}中,=14,前10項(xiàng)和. (1)求;
(2)將{}中的第2項(xiàng),第4項(xiàng),…,第項(xiàng)按原來的順序排成一個(gè)新數(shù)列{},令,求數(shù)列{}的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{}的前n項(xiàng)和,數(shù)列{}滿足=.
(I)求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列{}的前n項(xiàng)和為Tn,求滿足的n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)等差數(shù)列中,已知,試求n的值
(2)在等比數(shù)列中,,公比,前項(xiàng)和,求首項(xiàng) 和項(xiàng)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列,的前三項(xiàng)和為,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com