【題目】已知函數(shù)f(x)的定義域?yàn)镽,且f(2)=2,又函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,若兩個(gè)正數(shù)a、b滿足f(2a+b)<2,則 的取值范圍是( )
A.( ,2)
B.(﹣∞, )∪(2,+∞)
C.(2,+∞)
D.(﹣∞, )
【答案】A
【解析】解:由圖可知,當(dāng)x>0時(shí),導(dǎo)函數(shù)f'(x)>0,原函數(shù)單調(diào)遞增, ∵兩正數(shù)a,b滿足f(2a+b)<2,
又由f(2)=2,即f(2a+b)<2,
即2a+b<2,
又由a>0.b>0;
故a,b所對(duì)應(yīng)的平面區(qū)域如下圖所示:
表示動(dòng)點(diǎn)(a,b)與定點(diǎn)(﹣2,﹣2)連線的斜率,
當(dāng)直線過(1,0)點(diǎn)時(shí), = ,
當(dāng)直線過(0,2)點(diǎn)時(shí), =2,
故 ∈( ,2),
故選:A.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠今年1月、2月、3月生產(chǎn)某產(chǎn)品分別為1萬(wàn)件、1.2萬(wàn)件、1.3萬(wàn)件,為了估計(jì)以后每月的產(chǎn)量,以這三個(gè)月的產(chǎn)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量,與月份的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)、、為常數(shù))已知四月份該產(chǎn)品的產(chǎn)量為1.37萬(wàn)件,請(qǐng)問用以上哪個(gè)函數(shù)作模擬函數(shù)較好?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)).
(I)寫出直線的一般方程與曲線的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線向左平移個(gè)單位長(zhǎng)度,向上平移個(gè)單位長(zhǎng)度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐S﹣ABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則該三棱錐S﹣ABC的外接球的表面積為( )
A.32π
B.
C.
D. π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日,在韓國(guó)平昌冬奧會(huì)短道速滑男子500米比賽中,中國(guó)選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國(guó)代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造中國(guó)男子冰上競(jìng)速項(xiàng)目在冬奧會(huì)金牌零的突破.某高校為調(diào)查該校學(xué)生在冬奧會(huì)期間累計(jì)觀看冬奧會(huì)的時(shí)間情況,收集了200位男生、100位女生累計(jì)觀看冬奧會(huì)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).又在100位女生中隨機(jī)抽取20個(gè)人,已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.
(I)將這20位女生的時(shí)間數(shù)據(jù)分成8組,分組區(qū)間分別為,,…,,,完成頻率分布直方圖;
(II)以(I)中的頻率作為概率,求1名女生觀看冬奧會(huì)時(shí)間不少于30小時(shí)的概率;(III)以(I)中的頻率估計(jì)100位女生中累計(jì)觀看時(shí)間小于20個(gè)小時(shí)的人數(shù),已知200位男生中累計(jì)觀看時(shí)間小于20小時(shí)的男生有50人.請(qǐng)完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為“該校學(xué)生觀看冬奧會(huì)累計(jì)時(shí)間與性別有關(guān)”.
男生 | 女生 | 總計(jì) | |
累計(jì)觀看時(shí)間小于20小時(shí) | |||
累計(jì)觀看時(shí)間小于20小時(shí) | |||
總計(jì) | 300 |
附:().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,,是經(jīng)過小城的東西方向與南北方向的兩條公路,小城位于小城的東北方向,直線距離.現(xiàn)規(guī)劃經(jīng)過小城修建公路(,分別在與上),與,圍成三角形區(qū)域.
(1)設(shè),,求三角形區(qū)域周長(zhǎng)的函數(shù)解析式;
(2)現(xiàn)計(jì)劃開發(fā)周長(zhǎng)最短的三角形區(qū)域,求該開發(fā)區(qū)域的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的分類垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)1 000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):
“廚余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)試估計(jì)廚余垃圾投放正確的概率P;
(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率;
(3)假設(shè)廚余垃圾在“廚余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分別為a、b、c,其中a>0,a+b+c=600. 當(dāng)數(shù)據(jù)a、b、c的方差s2最大時(shí),寫出a、b、c的值(結(jié)論不要求證明),并求出此時(shí)s2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為選派一名學(xué)生參加全市實(shí)踐活動(dòng)技能竟賽,A、B兩位同學(xué)在學(xué)校的學(xué)習(xí)基地現(xiàn)場(chǎng)進(jìn)行加工直徑為20mm的零件測(cè)試,他倆各加工的10個(gè)零件直徑的相關(guān)數(shù)據(jù)如圖所示(單位:mm)
A、B兩位同學(xué)各加工的10個(gè)零件直徑的平均數(shù)與方差列于下表;
平均數(shù) | 方差 | |
A | 20 | 0.016 |
B | 20 | s2B |
根據(jù)測(cè)試得到的有關(guān)數(shù)據(jù),試解答下列問題:
(Ⅰ)計(jì)算s2B,考慮平均數(shù)與方差,說明誰(shuí)的成績(jī)好些;
(Ⅱ)考慮圖中折線走勢(shì)情況,你認(rèn)為派誰(shuí)去參賽較合適?請(qǐng)說明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com