【題目】如圖,在幾何體中,底面為矩形, , .點在棱上,平面與棱交于點

(Ⅰ)求證:

(Ⅱ)求證:平面平面;

(Ⅲ)若, ,平面平面,求二面角的大。

【答案】(1)見解析(2)見解析(3)

【解析】試題分析:(Ⅰ)由線面平行判定定理得平面,由線面平行性質(zhì)定理得;(Ⅱ)通過線面垂直平面,得面面垂直;(Ⅲ)先證 , 兩兩互相垂直,建立空間直角坐標系,求出面的法向量為,結(jié)合面的法向量為,求出法向量夾角即可.

試題解析:(Ⅰ)因為為矩形,所以,所以平面

又因為平面平面,所以

(Ⅱ)因為為矩形,所以.因為,所以平面

所以平面平面

(Ⅲ)因為 ,所以平面,所以

由(Ⅱ)得平面,所以,所以 , 兩兩互相垂直.建立空間直角坐標系

不妨設,則,設

由題意得, , , ,

所以, ,設平面的法向量為,則,則,所以

又平面的法向量為,所以

因為二面角的平面角是銳角,所以二面角的大小

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知α,且sin cos .

(1)cos α的值;

(2)sin(αβ)=- β,求cos β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家為了鼓勵節(jié)約用水,實行階梯用水收費制度,價格參照表如表:

用水量(噸)

單價(元/噸)

0~20(含)

2.5

20~35(含)

3

超過20噸不超過35噸的部分按3元/噸收費

35以上

4

超過35噸的部分按4元/噸收費


(1)若小明家10月份用水量為30噸,則應繳多少水費?
(2)若小明家10月份繳水費99元,則小明家10月份用水多少噸?
(3)寫出水費y與用水量x之間的函數(shù)關系式,并畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=-n2n,求數(shù)列{|an|}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙兩個容器,甲容器容量為,滿純酒精,乙容器容量為,其中裝有體積為的水(:單位: ).現(xiàn)將甲容器中的液體倒人乙容器中,直至甲容器中液體倒完或乙容器盛滿,攪拌使乙容器中兩種液體充分混合,再將乙容器中的液體倒人甲容器中直至倒?jié)M,攪拌使甲容器中液體充分混合,如此稱為一次操作,假設操作過程中溶液體積變化忽略不計.設經(jīng)過次操作之后,乙容器中含有純酒精單位: ),下列關于數(shù)列的說法正確的是( )

A. 時,數(shù)列有最大值

B. ,則數(shù)列為遞減數(shù)列

C. 對任意的,始終有

D. 對任意的,都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求函數(shù)的零點個數(shù);

(Ⅱ)證明: 是函數(shù)存在最小值的充分而不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列函數(shù)的定義域
(1)f(x)= ;
(2)f(x)= ;
(3)f(x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,且.設函數(shù)在區(qū)間內(nèi)單調(diào)遞減; 曲線軸交于不同的兩點,如果為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案