【題目】中國(guó)古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )

A. B. C. D.

【答案】A

【解析】分析該題屬于有限制條件的排列問題,在解題的過程中,需要分情況討論,因?yàn)椤皵?shù)”必須排在前三節(jié),這個(gè)就是不動(dòng)的,就剩下了五個(gè)不同的元素,所以需要對(duì)“數(shù)”的位置分三種情況,對(duì)于相鄰元素應(yīng)用捆綁法來解決即可.

詳解:當(dāng)“數(shù)”排在第一節(jié)時(shí)有排法,當(dāng)“數(shù)”排在第二節(jié)時(shí)有種排法,當(dāng)“數(shù)”排在第三節(jié)時(shí),當(dāng)“射”和“御”兩門課程排在第一、二節(jié)時(shí)有種排法,當(dāng)“射”和“御”兩門課程排在后三節(jié)的時(shí)候有種排法,所以滿足條件的共有種排法,故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 是函數(shù)的導(dǎo)函數(shù),則的圖象大致是( )

A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若正四面體PQMN的頂點(diǎn)分別在給定的四面體ABCD的面上,每個(gè)面上恰有一個(gè)點(diǎn),那么,( ).

A. 當(dāng)四面體ABCD是正四面體時(shí),正四面體PQMN有無數(shù)個(gè),否則,正四面體PQMN只有一個(gè)

B. 當(dāng)四面體ABCD是正四面體時(shí),正四面體PQMN有無數(shù)個(gè),否則,正四面體PQMN不存在

C. 當(dāng)四面體ABCD的三組對(duì)棱分別相等時(shí),正四面體PQMN有無數(shù)個(gè),否則,正四面體PQMN只有一個(gè)

D. 對(duì)任何四面體ABCD,正四面體PQMN都有無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交橢圓于兩點(diǎn),軸上的點(diǎn),若是以為斜邊的等腰直角三角形, 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2+cx+dx=1處取極小值,x=3處取極大值,且函數(shù)圖象在(2,f(2))處的切線與直線x-5y=0平行.

1)求實(shí)數(shù)abc的值;

2)設(shè)函數(shù)f(x)=0有三個(gè)不相等的實(shí)數(shù)根,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】最近的一次數(shù)學(xué)競(jìng)賽共6道試題,每題答對(duì)得7分,答錯(cuò)(或不答)0.賽后某參賽代表隊(duì)獲團(tuán)體總分161分,且統(tǒng)計(jì)分?jǐn)?shù)時(shí)發(fā)現(xiàn):該隊(duì)任兩名選手至多答對(duì)兩道相同的題目.沒有三名選手都答對(duì)兩道相同的題目.試問該隊(duì)選手至少有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次投籃測(cè)試中,有兩種投籃方案:方案甲:先在A點(diǎn)投籃一次,以后都在B點(diǎn)投籃;方案乙:始終在B點(diǎn)投籃.每次投籃之間相互獨(dú)立.某選手在A點(diǎn)命中的概率為,命中一次記3分,沒有命中得0分;在B點(diǎn)命中的概率為,命中一次記2分,沒有命中得0分,用隨機(jī)變量表示該選手一次投籃測(cè)試的累計(jì)得分,如果的值不低于3分,則認(rèn)為其通過測(cè)試并停止投籃,否則繼續(xù)投籃,但一次測(cè)試最多投籃3.

(1)若該選手選擇方案甲,求測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望.

(2)試問該選手選擇哪種方案通過測(cè)試的可能性較大?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)20個(gè)兩兩不同的正整數(shù),且集合中有201個(gè)不同的元素.求集合中不同元素個(gè)數(shù)的最小可能值.

查看答案和解析>>

同步練習(xí)冊(cè)答案