【題目】已知數(shù)列滿足:,,且、、成等差數(shù)列,其中.
(1)求實數(shù)的值和數(shù)列的通項公式;
(2)若數(shù)列滿足等式:(),求數(shù)列的前項和;
(3)在(2)的條件下,問:是否存在這樣的正數(shù),可以確保恰有5個自然數(shù)使得不等式成立?若存在,求的取值范圍,若不存在,說明理由.
【答案】(1),;(2);(3)存在,.
【解析】
由題意和等差中項的性質(zhì)列出關(guān)于的方程求出,再利用累加法求出數(shù)列的通項公式即可.
類比已知前項和求通項公式的方法,由等式,得到
,兩式相減得到,利用求出的通項公式,當時,,即可求出.
結(jié)合條件對進行分類討論,當時,利用分離參數(shù)法化簡得,利用取特殊值和比商法判斷出的單調(diào)性,進而判斷出的單調(diào)性,根據(jù)條件即可求出正數(shù)的取值范圍.
因為,,
所以,,
因為、、成等差數(shù)列,
所以,即,
解得,,
所以,
以上式子相加可得,,
因為,
所以,即.
因為,
所以,
可得,,
因為 ,所以即,
當時,,
因為數(shù)列的前項和為,
所以.
假設(shè)存在這樣的正數(shù).
因為,所以使不等式成立,
即使不等式成立即可.
因為,所以當時,上式顯然成立,
當時,不等式可化為,
當時,;當時,;
當時,;當時,;
令,則,
當時,,則,
所以當時,隨著的增大而增大,則隨著的增大而減小,
因為使不等式成立的自然數(shù)恰有5個,
所以正數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形.平面,分別為的中點,與平面所成的角為.
(1)證明:為異面直線與的公垂線;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),若無窮數(shù)列滿足:對所有整數(shù),都成立,則稱“-折疊數(shù)列”.
(1)求所有的實數(shù),使得通項公式為的數(shù)列是-折疊數(shù)列;
(2)給定常數(shù),是否存在數(shù)列,使得對所有,都是-折疊數(shù)列,且的各項中恰有個不同的值?證明你的結(jié)論;
(3)設(shè)遞增數(shù)列滿足.已知如果對所有,都是-折疊數(shù)列,則的各項中至多只有個不同的值,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義域為的函數(shù),對任意,都滿足:,,且當時,.
(1)請指出在區(qū)間上的奇偶性、單調(diào)區(qū)間、零點;
(2)試證明是周期函數(shù),并求其在區(qū)間()上的解析式;
(3)方程有三個不等根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了2018年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工的月工資均在(百元)內(nèi),且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(1)求的值;
(2)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名.
①完成如下所示列聯(lián)表
技術(shù)工 | 非技術(shù)工 | 總計 | |
月工資不高于平均數(shù) | |||
月工資高于平均數(shù) | |||
總計 |
②則能否在犯錯誤的概率不超過的前提下認為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,橢圓:的離心率為,直線與交于,兩點,長度的最大值為4.
(1)求的方程;
(2)直線與軸的交點為,當直線變化(不與軸重合)時,若,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線,圓,以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求的極坐標方程;
(2)若直線的極坐標方程為,設(shè)的交點為A,B,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上下兩個焦點分別為,過點與軸垂直的直線交橢圓于兩點,的面積為,橢圓的長軸長是短軸長的倍.
(1)求橢圓的標準方程;
(2)已知為坐標原點,直線與軸交于點,與橢園交于兩個不同的點,若存在實數(shù),使得,求的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ln(a x)+bx在點(1,f(1))處的切線是y=0;
(I)求函數(shù)f(x)的極值;
(II)當恒成立時,求實數(shù)m的取值范圍(e為自然對數(shù)的底數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com