【題目】過點(diǎn)P(1,2)引直線,使A(2,3),B(4,-5)到它的距離相等,則這條直線的方程為 ( )
A. 4x+y-6=0
B. x+4y-6=0
C. 2x+3y-7=0或x+4y-6=0
D. 3x+2y-7=0或4x+y-6=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線過點(diǎn).
(1)若直線與曲線交于兩點(diǎn),求的值;
(2)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分14分)已知函數(shù)。
(1)若曲線在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的值;
(2)若恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中且.
(Ⅰ)當(dāng)時(shí),求函數(shù)的值域;
(Ⅱ)當(dāng)在區(qū)間上為增函數(shù)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;
(2)設(shè)O為△ABC的外心,已知AB=3,AC=4,非零實(shí)數(shù)x,y滿足=x+y,且x+2y=1,求cos ∠BAC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N.
(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說明理由).
(2)判斷平面BEG與平面ACH的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時(shí),求的最大值;
(Ⅱ)若對(duì),恒成立,求的取值范圍;
(Ⅲ)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)(0,1),(3+2,0),(3-2,0)在圓C上.
(1)求圓C的方程.
(2)若圓C與直線x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com