如圖,在平面直角坐標系中,設(shè)點),直線:,點在直線上移動,是線段軸的交點, 過、分別作直線、,使, .

(1)求動點的軌跡的方程;
(2)在直線上任取一點做曲線的兩條切線,設(shè)切點為、,求證:直線恒過一定點;
(3)對(2)求證:當直線的斜率存在時,直線的斜率的倒數(shù)成等差數(shù)列.

(1).(2)利用導(dǎo)數(shù)法求出直線AB的方程,然后再利用直線橫過定點知識解決.(3)用坐標表示出斜率,然后再利用等差中項的知識證明即可

解析試題分析:(1)依題意知,點是線段的中點,且,
是線段的垂直平分線.∴
故動點的軌跡是以為焦點,為準線的拋物線,其方程為:
(2)設(shè),兩切點為, 
,求導(dǎo)得
∴兩條切線方程為 ① 
②                 
對于方程①,代入點得,,又
整理得:
同理對方程②有
為方程的兩根.
  ③                            
設(shè)直線的斜率為,
所以直線的方程為,展開得:
,代入③得:
∴直線恒過定點.                            
(3) 證明:由(2)的結(jié)論,設(shè), , 
且有,  
                  

=  
又∵,所以
即直線的斜率倒數(shù)成等差數(shù)列.  
考點:本題考查了拋物線與導(dǎo)數(shù)、數(shù)列的綜合考查
點評:解答拋物線綜合題時,應(yīng)根據(jù)其幾何特征熟練的轉(zhuǎn)化為數(shù)量關(guān)系(如方程、函數(shù)),再結(jié)合代數(shù)方法解答,這就要學(xué)生在解決問題時要充分利用數(shù)形結(jié)合、設(shè)而不求、弦長公式及韋達定理綜合思考,重視對稱思想、函數(shù)與方程思想、等價轉(zhuǎn)化思想的應(yīng)用

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米建立適當?shù)钠矫嬷苯亲鴺讼担髵佄锞方程.現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,直線,為平面上的動點,過點的垂線,垂足為點,且
(1)求動點的軌跡曲線的方程;
(2)設(shè)動直線與曲線相切于點,且與直線相交于點,試探究:在坐標平面內(nèi)是否存在一個定點,使得以為直徑的圓恒過此定點?若存在,求出定點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓E:)離心率為,上頂點M,右頂點N,直線MN與圓相切,斜率為k的直線l經(jīng)過橢圓E在正半軸的焦點F,且交E于A、B不同兩點.
(1)求E的方程;
(2)若點G(m,0)且| GA|=| GB|,,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是橢圓的左焦點,直線方程為,直線軸交于點,、分別為橢圓的左右頂點,已知,且
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率為的直線交橢圓于、兩點,求三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N  (點M在點N的右側(cè)),且。橢圓D:的焦距等于,且過點

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M的動直線與橢圓D交于A、B兩點,若點N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.

(Ⅰ)若點G的橫坐標為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2
試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中心在坐標原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點。若分別過橢圓的左右焦點的動直線、相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率、、滿足

(1)求橢圓的方程;
(2)是否存在定點M、N,使得為定值.若存在,求出M、N點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案