【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
【答案】(1);(2)在2007至2013年該地區(qū)農(nóng)村居民家庭人均純收入在逐年增加,平均每年增加千元;元.
【解析】試題本題第(1)問,由給出的與公式求出與,從而求出回歸直線方程;對第(2)問,由第(1)問求出的回歸直線方程進(jìn)行預(yù)測,令,可得的近似值.
試題解析:(1)由題意知,,,所以=,
所以==,所以線性回歸方程為。
(2)由(1)中的線性回歸方程可知,,所以在2007至2013年該地區(qū)農(nóng)村居民家庭人均純收入在逐年增加,平均每年增加千元.
令得:,故預(yù)測該地區(qū)在2015年農(nóng)村居民家庭人均純收入為元。
【易錯(cuò)點(diǎn)】本題的易錯(cuò)點(diǎn)是第(1)問計(jì)算錯(cuò)誤,第(2)問在2007至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,不知道如何回答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:.
(1)若直線經(jīng)過拋物線的焦點(diǎn),求拋物線的準(zhǔn)線方程;
(2)若斜率為-1的直線經(jīng)過拋物線的焦點(diǎn),且與拋物線交于,兩點(diǎn),當(dāng)時(shí),求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,
(Ⅰ)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn),曲線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是雙曲線上一點(diǎn), 分別是雙曲線的左、右頂點(diǎn),直線的斜率之積為.
(1)求雙曲線的離心率;
(2)過雙曲線的右焦點(diǎn)且斜率為的直線交雙曲線于兩點(diǎn), 為坐標(biāo)原點(diǎn), 為雙曲線上一點(diǎn),滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】即將于年夏季畢業(yè)的某大學(xué)生準(zhǔn)備到貴州非私營單位求職,為了了解工資待遇情況,他在貴州省統(tǒng)計(jì)局的官網(wǎng)上,查詢到年到年非私營單位在崗職工的年平均工資近似值(單位:萬元),如下表:
年份 | ||||||||||
序號(hào) | ||||||||||
年平均工資 |
(1)請根據(jù)上表的數(shù)據(jù),利用線性回歸模型擬合思想,求關(guān)于的線性回歸方程(,的計(jì)算結(jié)果根據(jù)四舍五入精確到小數(shù)點(diǎn)后第二位);
(2)如果畢業(yè)生對年平均工資的期望值為8.5萬元,請利用(1)的結(jié)論,預(yù)測年的非私營單位在崗職工的年平均工資(單位:萬元。計(jì)算結(jié)果根據(jù)四舍五入精確到小數(shù)點(diǎn)后第二位),并判斷年平均工資能否達(dá)到他的期望.
參考數(shù)據(jù):,,
附:對于一組具有線性相關(guān)的數(shù)據(jù):,,,,
其回歸直線的斜率和截距的最小二乘法估計(jì)分別為
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,為橢圓的左、右焦點(diǎn),點(diǎn)在直線上且不在軸上,直線與橢圓的交點(diǎn)分別為和,為坐標(biāo)原點(diǎn).
設(shè)直線的斜率為,證明:
問直線上是否存在點(diǎn),使得直線的斜率滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓x2+y2+x-6y+3=0與直線x+2y-3=0的兩個(gè)交點(diǎn)為P、Q,求以PQ為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有下列四個(gè)命題:
:若,則;
:若,則;
:“”是“為奇函數(shù)”的充要條件;
:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.
其中,真命題的是
A. ,B. ,C. ,D. ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com