【題目】設(shè)全集U=R.
(1)解關(guān)于x的不等式|x﹣1|+a﹣1>0(a∈R);
(2)記A為(1)中不等式的解集,B為不等式組 的整數(shù)解集,若(UA)∩B恰有三個元素,求a的取值范圍.

【答案】
(1)解:由|x﹣1|+a﹣1>0 得|x﹣1|>1﹣a,

當(dāng)a>1時,解集是R;

當(dāng)a≤1時,解集是{x|x<a,或 x>2﹣a}


(2)解:解不等式組 ,得:﹣4<x≤ ,

故B={﹣3,﹣2,﹣1,0,1,2,3,4},

當(dāng)a>1時,CUA=,不滿足條件.

當(dāng)a≤1時,CUA={x|a≤x≤2﹣a},∴2﹣a≥1,

若(UA)∩B恰有三個元素,

,解得:﹣1<a≤0


【解析】(1)通過討論a的范圍,求出不等式的解集即可;(2)解不等式組,求出集合B,通過討論a的范圍,求出A,結(jié)合題意得到關(guān)于a的不等式,解出即可.
【考點精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一批土雞蛋中,隨機(jī)抽取n個得到一個樣本,其重量(單位:克)的頻數(shù)分布表如表:

分組(重量)

[80,85)

[85,90)

[90,95)

[95,100]

頻數(shù)(個)

10

50

m

15

已知從n個土雞蛋中隨機(jī)抽取一個,抽到重量在在[90,95)的土雞蛋的根底為
(1)求出n,m的值及該樣本的眾數(shù);
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的土雞蛋中共抽取5個,再從這5個土雞蛋中任取2 個,其重量分別是g1 , g2 , 求|g1﹣g2|≥10概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若函數(shù)處的切線平行于直線,求實數(shù)a的值

)判斷函數(shù)在區(qū)間上零點的個數(shù);

)在()的條件下,若在上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的側(cè)棱底面,且底面是直角梯形,,,點在側(cè)棱上.

(1)求證:平面

(2)若側(cè)棱與底面所成角的正切值為,點為側(cè)棱的中點,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當(dāng)0<a<1且t=﹣1時,解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=af(x)+tx2﹣2t+1在區(qū)間(﹣1,2]上有零點,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調(diào)性,并證明當(dāng)時, ;

(Ⅱ)證明:當(dāng)時,函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4﹣x),且當(dāng)x≠2時其導(dǎo)函數(shù)f′(x)滿足(x﹣2)f′(x)>0,若2<a<4則(  )
A.f(2a)<f(3)<f(log2a)
B.f(log2a)<f(3)<f(2a
C.f(3)<f(log2a)<f(2a
D.f(log2a)<f(2a)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是R上的奇函數(shù),且的圖象關(guān)于對稱,當(dāng)時, ,

(Ⅰ)當(dāng) 時,求的解析式;

(Ⅱ)計算的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù),在同一直角坐標(biāo)系中f(x)與g(x)相同的一組是(
A.f(x)= ,g(x)=
B.f(x)= ,g(x)=x﹣3
C.f(x)= ,g(x)=
D.f(x)=x,g(x)=lg(10x

查看答案和解析>>

同步練習(xí)冊答案