【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為微信控,否則稱其為非微信控,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

1)根據(jù)以上數(shù)據(jù),能否有的把握認(rèn)為微信控性別有關(guān)?

2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,再隨機(jī)抽取3人贈送禮品,試求抽取3人中恰有2人是微信控的概率.

參考公式:,其中

參考數(shù)據(jù):

0.050

0.040

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

【答案】1)沒有(2

【解析】

1)計算得到答案.

2)根據(jù)題意“微信控”人分別記為 “非微信控”2人分別記為,列出所有情況,統(tǒng)計滿足條件的情況,計算得到概率.

1)由列聯(lián)表可得:

,

所以沒有的把握認(rèn)為“微信控”與 “性別”有關(guān).

2)根據(jù)題意所抽取的5位女性中,“微信控”有3人,“非微信控”有2人.

“微信控”人分別記為;“非微信控”2人分別記為

則再從中隨機(jī)抽取人構(gòu)成的所有基本事件為:

,,,,,,10種;

抽取人中恰有2人為“微信控”所含基本事件為:

,,,,6種,所求為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若曲線交于兩點,,的中點為,點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點A,B以及CD的中點P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為km

(I)設(shè),將表示成的函數(shù)關(guān)系式;

(II)確定污水處理廠的位置,使三條排污管道的總長度最短,并求出最短值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①已知向量的夾角是鈍角,則實數(shù)的取值范圍是

②函數(shù)的圖像關(guān)于對稱;

③函數(shù)的最小正周期為;

④函數(shù)為周期函數(shù);

⑤函數(shù)的圖像關(guān)于點對稱的函數(shù)圖像的解析式為

其中正確命題的序號為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)x∈[0,],若函數(shù)F(x)=f(x)-3的所有零點依次記為,且,則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足,.

(1)求函數(shù)f(x)的解析式;

(2)求函數(shù)g(x)的單調(diào)區(qū)間;

(3)給出定義:若s,tr滿足,則稱st更接近于r,當(dāng)x≥1時,試比較哪個更接近,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,ABCDAD=DC=CB=a,∠ABC=,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=AD,點M在線段EF上。

(1)求證:BC⊥平面ACFE;

(2)若,求證:AM∥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線,.

1)證明:不論取任何實數(shù),直線與圓恒交于兩點;

2)當(dāng)直線被圓截得的弦長最短時,求此最短弦長及直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1)設(shè)函數(shù)的定義域為A

①若,,,求實數(shù)c的值.

②若,,求M的最小值

2)若,對任意的,存在,使得不等式成立,求實數(shù)n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案