【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式

(2)若不等式在R上恒成立,求實數(shù)的取值范圍.

【答案】(1)[2,+∞).(2){a|a≥2或a≤-4}.

【解析】試題分析:(1)分x<-1,-1≤x≤3,x>3三種情況去掉絕對值討論即可.

(2)由絕對值三角不等式的性質(zhì)可得|x+a|+|x-1|≥|a+1|,只需|a+1|≥3,求解即可.

試題解析:(1)依題意,|x+1|+|x-3|≤2x.

當(dāng)x<-1時,原不等式化為-1-x+3-x≤2x,解得x≥,故無解;

當(dāng)-1≤x≤3時,原不等式化為x+1+3-x≤2x,解得x≥2,故2≤x≤3;

當(dāng)x>3時,原不等式化為x+1+x-3≤2x,即-2≤0恒成立.

綜上所述,不等式f(x)+|x-3|≤2x的解集為[2,+∞).

(2)f(x)+|x-1|≥3|x+a|+|x-1|≥3恒成立,

由|x+a|+|x-1|≥|a+1|可知,只需|a+1|≥3即可,

故a≥2或a≤-4,即實數(shù)a的取值范圍為{a|a≥2或a≤-4}.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)

(1)判斷函數(shù)零點的個數(shù),并給出證明;

(2)首項為的數(shù)列滿足:①;②.其中.求證:對于任意的,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex(x3﹣3x+2﹣c)+x(x≥﹣2),若不等式f(x)≥0恒成立,則實數(shù)c的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)連續(xù)擲兩次骰子得到的點數(shù)分別為m、n,令平面向量 ,
(1)求使得事件“ ”發(fā)生的概率;
(2)求使得事件“ ”發(fā)生的概率;
(3)使得事件“直線 與圓(x﹣3)2+y2=1相交”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)定義在實數(shù)集R上的奇函數(shù),當(dāng)x≥0時,函數(shù)y=f(x)的圖象如圖所示(拋物線的一部分).

(1)在原圖上畫出x<0時函數(shù)y=f(x)的示意圖;
(2)求函數(shù)y=f(x)的解析式(不要求寫出解題過程);
(3)寫出函數(shù)y=|f(x)|的單調(diào)遞增區(qū)間(不要求寫出解題過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的定義域和值域:
(1)y=3
(2)y=
(3)y=log2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表中給出了2011年~2015年某市快遞業(yè)務(wù)總量的統(tǒng)計數(shù)據(jù)(單位:百萬件)

年份

2011

2012

2013

2014

2015

年份代碼

1

2

3

4

5

快遞業(yè)務(wù)總量

34

55

71

85

105


(1)在圖中畫出所給數(shù)據(jù)的折線圖;

(2)建立一個該市快遞量y關(guān)于年份代碼x的線性回歸模型;
(3)利用(2)所得的模型,預(yù)測該市2016年的快遞業(yè)務(wù)總量.
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:
斜率: ,縱截距:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 是定義在(﹣1,1)上的奇函數(shù),且
(1)確定函數(shù)的解析式;
(2)證明函數(shù)f(x)在(﹣1,1)上是增函數(shù);
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax2+1,(a∈R).
(1)若f(x)圖象上橫坐標(biāo)為1的點處存在垂直于y軸的切線,求a的值;
(2)若f(x)在區(qū)間(﹣1,2)內(nèi)有兩個不同的極值點,求a取值范圍;
(3)當(dāng)a=1時,是否存在實數(shù)m,使得函數(shù)g(x)=x4﹣5x3+(2﹣m)x2+1的圖象于函數(shù)f(x)的圖象恰有三個不同的交點,若存在,試求出實數(shù)m的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案