【題目】設(shè)函數(shù) f(x)的最小值為0.

(1)a的值;

(2)若數(shù)列滿足a1=1,an+l=f(an)+2(nZ+),Sn=[a1]+[a2]+…+[an],[m]表示不超過實數(shù)m的最大整數(shù),求Sn.

【答案】(1) 當(dāng)a=1f(x)取得最小值0. (2) Sn=2n-1

【解析】

(1)(x>0).

當(dāng)a≤0時,>0,則f(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,無最小值,不符合題意.

當(dāng)a>0時,若0<x<a<0;

x>a,則>0.

所以,函數(shù)f(x)在區(qū)間(0,a)內(nèi)單調(diào)遞減,在區(qū)間(a,+∞)內(nèi)單調(diào)遞增.

f(x)min=f(a)=ln a-a+1.

設(shè)g(a)=ln a-a+1(a>0)..

0<a<1,>0;

a>1,<0.

所以,函數(shù)g(a)在區(qū)間(0,1)內(nèi)單調(diào)遞增,在區(qū)間(1,+∞)內(nèi)單調(diào)遞減.

g(a)≤g(1)=0.

當(dāng)且僅當(dāng)a=1時,上式等號成立.

從而,當(dāng)a=1,f(x)取得最小值0.

(2)(1)

.

an+1=f(an)+2=lnan++1.

a1=1,a2=2.

從而,a3=ln2+.

因為<ln2<1,所以,2<a3<3.

下面用數(shù)學(xué)歸納法證明:當(dāng)n≥3時,2<an<3.

當(dāng)n=3時,結(jié)論已成立.

假設(shè)n=k(k≥3)時,2<ak<3.

當(dāng)n=k+1時,有.

(1)

h(x)=f(x)+2=lnx++1

在區(qū)間(2,3)內(nèi)單調(diào)遞增.

所以,h(2)<h(ak)<h(3),

ln2>,ln3<2<h(ak)<32<ak+1<3,

即當(dāng)n=k+1時,結(jié)論也成立.

由歸納假設(shè),知對一切整數(shù)n≥3,均有2<an<3.

于是,[a1]=1,[an]=2(n≥2).

Sn=[ a1]+[a2]+…+[an] =1+2(n-1)-2n-1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,,,沿對角線折起至,使得二面角,連結(jié)。

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】恩格爾系數(shù)(記為)是指居民的食物支出占家庭消費總支出的比重.國際上常用恩格爾系數(shù)來衡量一個國家和地區(qū)人民生活水平的狀況.聯(lián)合國對消費水平的規(guī)定標(biāo)準(zhǔn)如下表:

家庭類型

貧窮

溫飽

小康

富裕

最富裕

實施精準(zhǔn)扶貧以來,根據(jù)對某山區(qū)貧困家庭消費支出情況(單位:萬元)的抽樣調(diào)查,2018年每個家庭平均消費支出總額為2萬元,其中食物消費支出為1.2萬元預(yù)測2018年到2020年每個家庭平均消費支出總額每年的增長率約是30%,而食物消費支出平均每年增加0.2萬元,預(yù)測該山區(qū)的家庭2020年將處于( )

A.貧困水平B.溫飽水平C.小康水平D.富裕水平

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)kk0k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.在平面直角坐標(biāo)系中,設(shè)A(﹣3,0),B3,0),動點M滿足2,則動點M的軌跡方程為()

A. x52+y216B. x2+y529

C. x+52+y216D. x2+y+529

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖F1、F2為雙曲線C的左、右焦點,動點P(x0,y0)(y0≥1)在雙曲線C的右支上.設(shè)∠F1PF2的平分線與x軸、y軸分別交于點M(m,0)、N.

(1)m的取值范圍;

(2)設(shè)過點F1、N的直線l與雙曲線C交于DE兩點,求F2DE面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l1kx-y+4=0與直線l2x+ky-3=0相交于點P,則當(dāng)實數(shù)k變化時,點P到直線4x-3y+10=0的距離的最大值為(  )

A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)設(shè)曲線在原點處切線與直線垂直,則a=______.

(2)已知等差數(shù)列中,已知,則=________________.

(3)若函數(shù),則__________

(4)曲線與直線軸圍成的圖形的面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若函數(shù)的最大值為3,求實數(shù)的值;

若當(dāng)時,恒成立,求實數(shù)的取值范圍;

,是函數(shù)的兩個零點,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.為了計算每天良馬和駑馬所走的路程之和,設(shè)計框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案