【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn), ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為

【答案】
(1)證明:∵PA⊥底面ABCD,AB底面ABCD,∴PA⊥AB,

又∵底面ABCD為矩形,∴AB⊥AD,PA∩AD=A,PA平面PAD,AD平面PAD,

∴AB⊥平面PAD,又PD平面PAD,∴AB⊥PD,AD=AP,E為PD中點(diǎn),∴AE⊥PD,AE∩AB=A,AE平面ABE,AB平面ABE,∴PD⊥平面ABE


(2)解:以A為原點(diǎn),以 為x,y,z軸正方向,建立空間直角坐標(biāo)系A(chǔ)﹣BDP,令|AB|=2,

則A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(xiàn)(1,0,0), , ,M(2λ,2λ,2﹣2λ)

設(shè)平面PFM的法向量 , ,即 ,

設(shè)平面BFM的法向量 ,

, ,解得


【解析】(I)證明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可證明PD⊥平面ABE.(II) 以A為原點(diǎn),以 為x,y,z軸正方向,建立空間直角坐標(biāo)系A(chǔ)﹣BDP,求出相關(guān)點(diǎn)的坐標(biāo),平面PFM的法向量,平面BFM的法向量,利用空間向量的數(shù)量積求解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱 中, , , 是棱上的動點(diǎn).

證明:

若平面分該棱柱為體積相等的兩個部分,試確定點(diǎn)的位置,并求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn),動圓經(jīng)過點(diǎn)且和直線相切,記動圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點(diǎn)的橫坐標(biāo)為,過的直線交于一點(diǎn),交軸于點(diǎn),過點(diǎn)的垂線交于另一點(diǎn),若的切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】活水圍網(wǎng)養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:活水圍網(wǎng)養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過/立方米時, 的值為千克/年;當(dāng)時, 的一次函數(shù),且當(dāng)時,

)當(dāng)時,求關(guān)于的函數(shù)的表達(dá)式.

)當(dāng)養(yǎng)殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求函數(shù)f(x)=x2+2xa-1在區(qū)間上的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中, ,ACB=90°,M是 的中點(diǎn),N是的中點(diǎn).

Ⅰ)求證:MN∥平面;

求點(diǎn)到平面BMC的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)y=f(x)的解析式,并用“五點(diǎn)法作圖”在給出的直角坐標(biāo)系中畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;

(2)設(shè)α∈(0,π),f( )= ,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于f(x)=4sin (xR),有下列命題

①由f(x1)=f(x2)=0可得x1x2π的整數(shù)倍

yf(x)的表達(dá)式可改寫成y=4cos;

yf(x)圖象關(guān)于對稱;

yf(x)圖象關(guān)于x=-對稱.

其中正確命題的序號為________(將你認(rèn)為正確的都填上)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《最強(qiáng)大腦》是江蘇衛(wèi)視推出國內(nèi)首檔大型科學(xué)類真人秀電視節(jié)目,該節(jié)目集結(jié)了國內(nèi)外最頂尖的腦力高手,堪稱腦力界的奧林匹克,某校為了增強(qiáng)學(xué)生的記憶力和辨識力也組織了一場類似《最強(qiáng)大腦》的PK賽,A、B兩隊(duì)各由4名選手組成,每局兩隊(duì)各派一名選手PK,除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分,假設(shè)每局比賽兩隊(duì)選手獲勝的概率均為0.5,且各局比賽結(jié)果相互獨(dú)立.
(1)求比賽結(jié)束時A隊(duì)的得分高于B隊(duì)的得分的概率;
(2)求比賽結(jié)束時B隊(duì)得分X的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案