【題目】共享單車是指企業(yè)的校園,地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車單車共享服務,是一種分時租賃模式,某共享單車企業(yè)為更好服務社會,隨機調(diào)查了100人,統(tǒng)計了這100人每日平均騎行共享單車的時間(單位:分鐘),由統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時間在三組對應的人數(shù)依次成等差數(shù)列
(1)求頻率分布直方圖中的值.
(2)若將日平均騎行時間不少于80分鐘的用戶定義為“忠實用戶”,將日平均騎行時間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實用戶”的概率.
【答案】(1) , ;(2) .
【解析】試題分析:(1)根據(jù)直方圖各矩形面積和為可得,從而可得的值,在根據(jù)三組對應的人數(shù)依次成等差數(shù)列求出的值;(2)列舉出這人中任選人共種情形,符合題設條件有共有種,根據(jù)古典概型概率公式可得恰好人為“忠實用戶”的概率.
試題解析:(1)由,
又,所以.
(2)“忠實用戶”“潛力用戶”的人數(shù)之比為: ,
所以“忠實用戶”抽取人,“潛力用戶”抽取人,
記事件:從人中任取人恰有人為“忠實用戶”
設兩名“忠實用戶”的人記為: ,三名“潛力用戶”的人記為: ,
則這5人中任選3人有: ,共10種情形,
符合題設條件有: 共有6種,因此概率為.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線M的參數(shù)方程為 (θ為參數(shù)),若以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線N的極坐標方程為ρsin(θ+)=t(其中t為常數(shù)).
(Ⅰ)若曲線N與曲線M只有一個公共點,求t的值;
(Ⅱ)當t=-1時,求曲線M上的點與曲線N上的點的最小距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856266)[選修4-5:不等式選講]
設函數(shù)f(x)=|2x-1|-|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若x0∈R,使得f+2m2<4m,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(導學號:05856290)[選修4-5:不等式選講]
已知函數(shù)f(x)=|x-a|+|x-2a|.
(Ⅰ)對任意x∈R,不等式f(x)>1成立,求實數(shù)a的取值范圍;
(Ⅱ)當a=-1時,解不等式f(x)<3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x++2(m為實常數(shù)).
(1)若函數(shù)f(x)圖象上動點P到定點Q(0,2)的距離的最小值為,求實數(shù)m的值;
(2)若函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù),試用函數(shù)單調(diào)性的定義求實數(shù)m的取值范圍;
(3)設m<0,若不等式f(x)≤kx在x∈[,1]時有解,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,則下列結論正確的是( )
A. S2 016=-2 016,a2 013>a4
B. S2 016=2 016,a2 013>a4
C. S2 016=-2 016,a2 013<a4
D. S2 016=2 016,a2 013<a4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:“x0∈(-1,1),x-x0-m=0(m∈R)”是正確的,設實數(shù)m的取值集合為M.
(1)求集合M;
(2)設關于x的不等式(x-a)(x+a-2)<0(a∈R)的解集為N,若“x∈M”是“x∈N”的充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com