【題目】已知橢圓 ,四點(diǎn),,,中恰有三點(diǎn)在橢圓上.

(I)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過的右焦點(diǎn)作斜率為的直線交于,兩點(diǎn),直線軸交于點(diǎn)為線段的中點(diǎn),過點(diǎn)作直線于點(diǎn).證明:,,三點(diǎn)共線.

【答案】(I);(Ⅱ)證明見解析.

【解析】

I)根據(jù)橢圓的對稱性,得到,在橢圓上,不在橢圓上,將點(diǎn),代入橢圓的方程,聯(lián)立得到,,即可求出橢圓方程。

(Ⅱ)設(shè)直線的方程為,代入橢圓方程,由于為線段的中點(diǎn)、直線于點(diǎn),所以點(diǎn)、點(diǎn),分別得到、的表達(dá)式,然后相減檢驗是否為0,若為0,即三點(diǎn)共線。

I)根據(jù)橢圓對稱性,必過,,又,不在上,

,,∴橢圓的方程為.

(Ⅱ),設(shè)直線的方程為

代入橢圓方程,得,

設(shè),,則,,

易知,,

,

,∴,三點(diǎn)共線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,若為拋物線上第一象限的一動點(diǎn),過的垂線交準(zhǔn)線于點(diǎn),交拋物線于兩點(diǎn).

(Ⅰ)求證:直線與拋物線相切;

(Ⅱ)若點(diǎn)滿足,求此時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足,且對任意實數(shù)都有,則的值為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且離心率為

1)設(shè)過點(diǎn)的直線與橢圓相交于、兩點(diǎn),若的中點(diǎn)恰好為點(diǎn),求該直線的方程;

2)過右焦點(diǎn)的直線(與軸不重合)與橢圓交于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面.

1)求證:平面;

2)在線段上是否存在點(diǎn),使得平面與平面所成銳二面角的平面角為,且滿足?若不存在,請說明理由;若存在,求出的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為).

(I)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

(Ⅱ)已知是直線上的一點(diǎn),是曲線上的一點(diǎn), ,,若的最大值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在歲到歲的人群中隨機(jī)調(diào)查了人,并得到如圖所示的頻率分布直方圖,在這人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結(jié)果如圖所示:

年齡

不支持“延遲退休年齡政策”的人數(shù)

(1)由頻率分布直方圖,估計這人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過的前提下,認(rèn)為以歲為分界點(diǎn)的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計

不支持

支持

總計

附:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如上圖所示,在正方體中, 分別是棱的中點(diǎn), 的頂點(diǎn)在棱與棱上運(yùn)動,有以下四個命題:

A.平面 ; B.平面⊥平面;

C 在底面上的射影圖形的面積為定值;

D 在側(cè)面上的射影圖形是三角形.其中正確命題的序號是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊有名隊員,其中有名隊員打前鋒,有名隊員打后衛(wèi),甲、乙兩名隊員既能打前鋒又能打后衛(wèi).若出場陣容為名前鋒,名后衛(wèi),則不同的出場陣容共有______種.

查看答案和解析>>

同步練習(xí)冊答案