【題目】如圖,四棱錐PABCD的底面是平行四邊形,PDABOAD的中點(diǎn),BOCO.

(1)求證:AB⊥平面PAD

(2)若AD2AB=4, PAPD,點(diǎn)M在側(cè)棱PD上,且PD3MD,二面角PBCD的大小為,求直線BP與平面MAC所成角的正弦值.

【答案】1)詳見解析;(2;

【解析】

1)設(shè)NBC的中點(diǎn),可得,所以,可得平面

2)由二面角的定義找到二面角的平面角,得到,建系求得平面的一個(gè)法向量及直線的向量,利用公式可求得直線BP與平面MAC所成角的正弦值.

1)在平行四邊形ABCD中,設(shè)NBC的中點(diǎn),連接ON,因?yàn)?/span>OAD的中點(diǎn),所以,

又因?yàn)?/span>,得,所以,

平行四邊形ABCD中,,則,又平面平面

平面.

2)由(1)知平面,又平面,于是平面平面

連接,由,可得

,又,所以平面,得,故二面角的平面角為,

所以,以O為原點(diǎn),以x,y,z軸,建立空間直角坐標(biāo)系,則,

,可知,則,

設(shè)平面MAC的一個(gè)法向量為,由,即,令,得,

所以

設(shè)直線BP與平面MAC所成的角為,

所以

所以直線BP與平面MAC所成角的正弦值為.

故得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),求零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線處切線的斜率為,求此切線方程;

(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè):實(shí)數(shù)滿足 ,:實(shí)數(shù)滿足

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)f(x)的最小正周期及單調(diào)減區(qū)間;

(2)若α∈(0,π),且f,求tan的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設(shè)后,種植收入減少

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1) 求實(shí)數(shù)的值;

(2) 判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;

(3) 若方程內(nèi)有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,

I求證:平面;

II的中點(diǎn),求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3+bx2+cx(xR),已知g(x)=f(x)﹣f′(x)是奇函數(shù)

(1)求b、c的值.

(2)求g(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案