已知函數(shù)f(x)=x3+x-16.求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程

y=13x-32

解析試題分析:根據(jù)導(dǎo)數(shù)的幾何意義,先求函數(shù)的導(dǎo)函數(shù),進(jìn)而求出,得到曲線
在點(diǎn)處的切線的斜率,由點(diǎn)斜式得切線方程.
試題解析:
∵f ′(x)=3x2+1,     4分
∴f(x)在點(diǎn)(2,-6)處的切線的斜率為k=f ′(2)=13.      9分
∴切線的方程為y=13x-32.      12分
考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、直線的點(diǎn)斜式方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)0≤x≤1時(shí),f(x)+|2-a|>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=在點(diǎn)(-1,f(-1))處的切線方程為x+y+3=0.
(1)求函數(shù)f(x)的解析式.
(2)設(shè)g(x)=lnx.求證:g(x)≥f(x)在[1,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3+x-16.
(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線方程.
(2)如果曲線y=f(x)的某一切線與直線y=-x+3垂直,求切點(diǎn)坐標(biāo)與切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3-x2+ax-a(a∈R).
(1)當(dāng)a=-3時(shí),求函數(shù)f(x)的極值.
(2)若函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求下列各函數(shù)的導(dǎo)數(shù):
(1)y=(x+1)(x+2)(x+3).
(2)y=+.
(3)y=e-xsin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)的切線方程;
(2)對一切,恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),試討論內(nèi)的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中,
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論的單調(diào)性;
(3)若有兩個(gè)極值點(diǎn),記過點(diǎn)的直線的斜率為,問是否存在,使得?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=axn(1-x)+b(x>0),n為正整數(shù),a,b為常數(shù).曲線yf(x)在(1,f(1))處的切線方程為xy=1.
(1)求ab的值;
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案