【題目】已知函數(shù)

1)若函數(shù)上存在單調(diào)增區(qū)間,求實(shí)數(shù)的取值范圍;

2)若,證明:對于,總有

【答案】(1);(2)詳見解析.

【解析】

1)求出的導(dǎo)數(shù),將其轉(zhuǎn)化為在區(qū)間內(nèi)存在區(qū)間使得即上能成立,根據(jù)函數(shù)的最小值即可確定的范圍;(2)問題轉(zhuǎn)化為證明,在上恒成立,構(gòu)造函數(shù),,求出的導(dǎo)數(shù),判斷出函數(shù)的單調(diào)性,從而證出結(jié)論.

1)由題,

因?yàn)楹瘮?shù)存在單調(diào)增區(qū)間,

故在區(qū)間內(nèi)存在區(qū)間使得成立,

能成立,

上能成立,

的最小值是,

;

2)若,則,

,

,

又因?yàn)?/span>,所以,

要證原不等式成立,只要證,

只要證

只要證,在上恒成立,

首先構(gòu)造函數(shù),,

因?yàn)?/span>,

可得,在時(shí),,即上是減函數(shù),

時(shí), ,即上是增函數(shù),

所以,在上,,所以

所以,,等號成立當(dāng)且僅當(dāng)時(shí),

其次構(gòu)造函數(shù),,

因?yàn)?/span>

可見時(shí),,即上是減函數(shù),

時(shí), ,即上是增函數(shù),

所以在上,,所以,

所以,,等號成立當(dāng)且僅當(dāng)時(shí).

綜上所述,,

因?yàn)槿〉葪l件并不一致,

所以,在上恒成立,

所以,總有成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過去大多數(shù)人采用儲蓄的方式將錢儲蓄起來,以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財(cái)工具也多了起來,為了研究某種理財(cái)工具的使用情況,現(xiàn)對年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成5組:,,,,并整理得到頻率分布直方圖:

1)求圖中的a值;

2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,則三個(gè)組中,各抽取多少人;

3)由頻率分布直方圖,求所有被調(diào)查人員的平均年齡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以為頂點(diǎn)的五面體中,面是邊長為3的菱形.

(1)求證:

(2)若,,,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若不等式的解集為,求不等式的解集;

2時(shí),

①當(dāng)時(shí),若不等式有解,求的取值范圍;

②當(dāng)時(shí),設(shè),若存在,,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足 (kR)

1)求k和數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列{bn}滿足bn,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的一個(gè)焦點(diǎn)為,且橢圓過點(diǎn),為坐標(biāo)原點(diǎn),

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn),且?若存在,寫出該圓的方程,并求的最大值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有十二生肖,又叫十二屬相,每一個(gè)人的出生年份對應(yīng)了十二種動物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)的一種,現(xiàn)有十二生肖的吉物各一個(gè),甲、乙、丙三位同學(xué)依次選一個(gè)作為禮物,甲同學(xué)喜歡牛和馬,乙同學(xué)喜歡牛、兔、狗和羊,丙同學(xué)哪個(gè)吉祥物都喜歡,如果讓三位同學(xué)選取的禮物都滿意,那么不同的選法有(  )

A. 50B. 60C. 70D. 90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,分別為、的中點(diǎn).

(1)證明:平面;

(2)已知與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠今年前5個(gè)月某種產(chǎn)品的產(chǎn)量(單位:萬件)的數(shù)據(jù)如下表:

(月份)

1

2

3

4

5

(產(chǎn)量)

4

5

4

6

6

1)若從這5組數(shù)據(jù)中隨機(jī)抽出2組,求抽出的2組數(shù)據(jù)恰好是不相鄰兩個(gè)月的數(shù)據(jù)的概率;

2)求出關(guān)于的線性回歸方程,并估計(jì)今年6月份該種產(chǎn)品的產(chǎn)量.

參考公式:.

查看答案和解析>>

同步練習(xí)冊答案