【題目】2017高考特別強調(diào)了要增加對數(shù)學(xué)文化的考查,為此某校高三年級特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對整個高三年級的學(xué)生進行了測試.現(xiàn)從這些學(xué)生中隨機抽取了50名學(xué)生的成績,按照成績?yōu)? , ,…, 分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于50分).
(1)求頻率分布直方圖中的 的值,并估計所抽取的50名學(xué)生成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)若高三年級共有2000名學(xué)生,試估計高三學(xué)生中這次測試成績不低于70分的人數(shù);
(3)若利用分層抽樣的方法從樣本中成績不低于70分的三組學(xué)生中抽取6人,再從這6人中隨機抽取3人參加這次考試的考后分析會,試求后兩組中至少有1人被抽到的概率.
【答案】
(1)解:由頻率分布直方圖可得第4組的頻率為 ,
故 .
故可估計所抽取的50名學(xué)生成績的平均數(shù)為
(分).
由于前兩組的頻率之和為 ,前三組的頻率之和為 ,故中位數(shù)在第3組中.
設(shè)中位數(shù)為 分,
則有 ,所以 ,
即所求的中位數(shù)為 分
(2)解:由(1)可知,50名學(xué)生中成績不低于70分的頻率為 ,
由以上樣本的頻率,可以估計高三年級2000名學(xué)生中成績不低于70分的人數(shù)為
(3)解:由(1)可知,后三組中的人數(shù)分別為15,10,5,故這三組中所抽取的人數(shù)分別為3,2,1.記成績在 這組的3名學(xué)生分別為 , , ,成績在 這組的2名學(xué)生分別為 , ,成績在 這組的1名學(xué)生為 ,則從中任抽取3人的所有可能結(jié)果為 , , , , , , , , , , , , , , , , , , , 共20種.
其中后兩組中沒有人被抽到的可能結(jié)果為 ,只有1種,
故后兩組中至少有1人被抽到的概率為 .
【解析】(1)由頻率的直方圖求出第4組的頻率從而得到x的值,進而可估計所抽取的50名學(xué)生成績的平均數(shù)和中位數(shù)。(2)先求出50名學(xué)生中成績不低于70分的頻率為0.6,由此可以估計高三年級2000名學(xué)生中成績不低于70分的人數(shù)。(3)由列舉法一一列出各個成績段的滿足題意的人數(shù),由概率的定義得到兩組中至少有1人被抽到的概率的值。
【考點精析】關(guān)于本題考查的頻率分布直方圖和概率的意義,需要了解頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;任何事件的概率是0~1之間的一個確定的數(shù),它度量該事情發(fā)生的可能性.小概率事件很少發(fā)生,而大概率事件則經(jīng)常發(fā)生.知道隨機事件的概率有利于我們作出正確的決策才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cosx(sinx+cosx),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[﹣ , ]上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,3), =(3,x).
(1)如果 ∥ ,求實數(shù)x的值;
(2)如果x=﹣1,求向量 與 的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 與g(x)=cos(2x+φ) ,它們的圖象有一個橫坐標為 的交點.
(Ⅰ)求φ的值;
(Ⅱ)將f(x)圖象上所有點的橫坐標變?yōu)樵瓉淼? 倍,得到h(x)的圖象,若h(x)的最小正周期為π,求ω的值和h(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,設(shè) .
(1)求函數(shù)g(x)的表達式,并求函數(shù)g(x)的定義域;
(2)判斷函數(shù)g(x)的奇偶性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:( )
①向量 , 不共線,則向量 與向量 一定不共線
②對任意向量 , ,則 恒成立
③在同一平面內(nèi),對兩兩均不共線的向量 , , ,若給定單位向量 和正數(shù) ,總存在單位向量 和實數(shù) ,使得
則正確的序號為( )
A.①②③
B.①③
C.②③
D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程記錄的產(chǎn)量 (噸)與相應(yīng)的生產(chǎn)能耗 (噸標準煤)的幾組對照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
參考公式:
(1)已知產(chǎn)量 和能耗 呈線性關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出 關(guān)于 的線性回歸方程 ;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)耗能為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=﹣ sinx cosx+1
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間; (Ⅱ)若x∈[0, ],且f(x)= ,求cosx的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知 = .
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com