【題目】已知函數(shù) 有且僅有四個不同的點關(guān)于直線y=1的對稱點在直線kx+y﹣1=0上,則實數(shù)k的取值范圍為( )
A.
B.
C.
D.
【答案】A
【解析】解:直線kx+y﹣1=0關(guān)于直線y=1的對稱直線為﹣kx+y﹣1=0, 則直線﹣kx+y﹣1=0與y=f(x)的函數(shù)圖象有4個交點,
當(dāng)x>0時,f′(x)=1﹣lnx,
∴當(dāng)0<x<e時,f′(x)>0,當(dāng)x>e時,f′(x)<0,
∴f(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減,
作出y=f(x)與直線﹣kx+y﹣1=0的函數(shù)圖象,如圖所示:
設(shè)直線y=kx+1與y=2x﹣xlnx相切,切點為(x1 , y1),
則 ,解得:x1=1,k=1,
設(shè)直線y=kx+1與y=﹣x2﹣ (x<0)相切,切點為(x2 , y2),
則 ,解得x2=﹣1,k= .
∵直線y=kx+1與y=f(x)有4個交點,
∴直線y=kx+1與y=f(x)在(﹣∞,0)和(0,+∞)上各有2個交點,
∴ <k<1.
故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0 , 則稱點(x0 , f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.請你根據(jù)這一發(fā)現(xiàn),求:函數(shù) 對稱中心為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x∈[﹣2,1]時,不等式ax3﹣x2+4x+3≥0恒成立,則實數(shù)a的取值范圍是( )
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時,獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時,獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時間之和不超過12小時.假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機變量,其分布列為
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機變量.
(1)求Z的分布列和均值;
(2)若每天可獲取的鮮牛奶數(shù)量相互獨立,求3天中至少有1天的最大獲利超過10000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=﹣f(x),當(dāng)x∈[0,1]時,f(x)=2x﹣1,則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時,總有.
(1)判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:;
(3)若對所有的恒成立,其中(是常數(shù)),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證: ≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB⊥平面BCD,BC⊥CD,AD與平面BCD所成的角為30°,且AB=BC=2;
(1)求三棱錐A﹣BCD的體積;
(2)設(shè)M為BD的中點,求異面直線AD與CM所成角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓Γ: + =1(a>b>0)的離心率與雙曲線x2﹣y2=a2的離心率之和為 ,B1、B2為橢圓Γ短軸的兩個端點,P是橢圓Γ上一動點(不與B1、B2重合),直線B1P、B2P分別交直線l:y=4于M、N兩點,△B1B2P的面積記為S1 , △PMN的面積記為S2 , 且S1的最大值為4 .
(1)求橢圓Γ的方程;
(2)若S2=λS1 , 當(dāng)λ取最小值時,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com