【題目】如圖,四棱錐中,底面為矩形,平面,,分別為,的中點.
(1)證明:平面;
(2)若與平面所成的角為,,求點到平面的距離.
【答案】(1)證明見解析(2)
【解析】
(1)取的中點,連接,,由中位線定理可證,,再由已知條件可得,可證四邊形為平行四邊形,即可得證結(jié)論;
(2) 平面,點到平面的距離相等,轉(zhuǎn)化為求到平面的距離相等,連接,取的中點,連接,,可證,結(jié)合已知可得平面,由直線與平面所成角的定義,得,根據(jù)直角三角形邊角關(guān)系及中位線定理,求出,可得,由已知條件可得平面,進而有,可證平面,為所求距離;或求出三棱錐的體積和的面積,用等體積法,求點到平面的距離
解:(1)證明:如圖,取的中點,連接,,
在中,,分別為,的中點,
∴.又∵為中點,底面是矩形,
∴,∴,
∴四邊形為平行四邊形,∴.
又∵平面,平面,∴平面.
(2)方法一:連接,取的中點,連接,.
在中,,
∵平面,∴平面,
∵與平面所成角為,∴,
∵,∴,
在中,∵,,∴,
∴,
∴為等腰直角三角形,∴,
∵底面為矩形,∴,
∵平面,∴,又,
∴平面.
又平面,∴,
又∵,∴平面,
又∵,,
∴點到平面的距離為.
方法二:連接,取的中點,連接.
在中,,
∵平面,∴平面,
∵與平面所成角為,
∴.
∵,∴,在中,
∵,,
∴,,,
∴為等腰直角三角形,∴,
∵底面為矩形,∴,
∵平面,∴,又,
∴平面,∴.
在中,,
在中,.
設點到平面的距離為,則
由得.
∴,∴,
∴點到平面的距離為.
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)參加項目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實的需要,從項目中調(diào)出人參與項目的售后服務工作,每人每年可以創(chuàng)造利潤萬元(),項目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項目從事售后服務工作?
(2)在(1)的條件下,當從項目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時,才能使得項目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,點在線段上移動,有下列判斷:①平面平面;②平面平面;③三棱錐的體積不變;④平面.其中,正確的是______.(把所有正確的判斷的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果實系數(shù)、、和、、都是非零常數(shù).
(1)設不等式和的解集分別是、,試問是的什么條件?并說明理由.
(2)在實數(shù)集中,方程和的解集分別為和,試問是的什么條件?并說明理由.
(3)在復數(shù)集中,方程和的解集分別為和,證明:是的充要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)和.
(1)為偶函數(shù),試判斷的奇偶性;
(2)若方程有兩個不相等的實根,當時判斷在上的單調(diào)性;
(3)當時,問是否存在x的值,使?jié)M足且的任意實數(shù)a,不等式恒成立?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,曲線由兩個橢圓:和橢圓:組成,當成等比數(shù)列時,稱曲線為“貓眼曲線”.
(1)若貓眼曲線過點,且的公比為,求貓眼曲線的方程;
(2)對于題(1)中的求貓眼曲線,任作斜率為且不過原點的直線與該曲線相交,交橢圓所得弦的中點為M,交橢圓所得弦的中點為N,求證:為與無關(guān)的定值;
(3)若斜率為的直線為橢圓的切線,且交橢圓于點,為橢圓上的任意一點(點與點不重合),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,對于點,定義變換:將點變換為點,使得其中.這樣變換就將坐標系內(nèi)的曲線變換為坐標系內(nèi)的曲線.則四個函數(shù),,,在坐標系內(nèi)的圖象,變換為坐標系內(nèi)的四條曲線(如圖)依次是
A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖1是由正方形,直角梯形,三角形組成的一個平面圖形,其中,,將其沿,折起使得與重合,連接,如圖2.
(1)證明:圖2中的,,,四點共面,且平面平面;
(2)求圖2中的二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com