【題目】某學(xué)校要定制高一年級的校服,學(xué)生根據(jù)廠家提供的參考身高選擇校服規(guī)格.據(jù)統(tǒng)計,高一年級女生需要不同規(guī)格校服的頻數(shù)如表所示.
校服規(guī)格 | 155 | 160 | 165 | 170 | 175 | 合計 |
頻數(shù) | 39 | 64 | 167 | 90 | 26 | 386 |
如果用一個量來代表該校高一年級女生所需校服的規(guī)格,那么在中位數(shù)、平均數(shù)和眾數(shù)中,哪個量比較合適?試討論用表中的數(shù)據(jù)估計全國高一年級女生校服規(guī)格的合理性.
【答案】眾數(shù),合理性見解析.
【解析】
根據(jù)畫出條形統(tǒng)計圖分析即可.
為了更直觀地觀察數(shù)據(jù)的特征,我們用條形圖來表示表中的數(shù)據(jù)(圖).可以發(fā)現(xiàn),選擇校服規(guī)格為“165”的女生的頻數(shù)最高,所以用眾數(shù)165作為該校高一年級女生校服的規(guī)格比較合適.
由于全國各地的高一年級女生的身高存在一定的差異,所以用一個學(xué)校的數(shù)據(jù)估計全國高一年級女生的校服規(guī)格不合理.
眾數(shù)只利用了出現(xiàn)次數(shù)最多的那個值的信息.眾數(shù)只能告訴我們它比其他值出現(xiàn)的次數(shù)多,但并未告訴我們它比別的數(shù)值多的程度。因此,眾數(shù)只能傳遞數(shù)據(jù)中的信息的很少一部分,對極端值也不敏感.
一般地,對數(shù)值型數(shù)據(jù)(如用水量、身高、收入、產(chǎn)量等)集中趨勢的描述,可以用平均數(shù)、中位數(shù)而對分類型數(shù)據(jù)(如校服規(guī)格、性別、產(chǎn)品質(zhì)量等級等)集中趨勢的描述,可以用眾數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (為自然對數(shù)的底數(shù)).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個不同的交點,若f(c)=0且0<x<c時,f(x)>0,
(1)證明:是f(x)=0的一個根;
(2)試比較與c的大小;
(3)證明:-2<b<-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行電腦知識競賽,現(xiàn)將高一參賽學(xué)生的成績進行整理后分成五組繪制成如圖所示的頻率分布直方圖,已知圖中從左到右的第一、二、三、四、五小組的頻率分別是0.30,0.40,0.15,0.10,0.05.
求:(1)高一參賽學(xué)生的成績的眾數(shù)、中位數(shù);
(2)高一參賽學(xué)生的平均成績.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={x|x2-8x-20≤0},S={x||x-1|≤m}.
(1)若(P∪S)P,求實數(shù)m的取值范圍;
(2)是否存在實數(shù)m,使得“x∈P”是“x∈S”的充要條件?若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)100位居民的人均月用水量(單位:)的分組及各組的頻數(shù)如下:
,4; ,8; ,15;
,22; ,25; ,14;
,6; ,4; ,2.
(1)列出樣本的頻率分布表;
(2)畫出頻率分布直方圖,并根據(jù)直方圖估計這組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);
(3)當(dāng)?shù)卣贫巳司掠盟繛?/span>的標(biāo)準(zhǔn),若超出標(biāo)準(zhǔn)加倍收費,當(dāng)?shù)卣f,以上的居民不超過這個標(biāo)準(zhǔn),這個解釋對嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓經(jīng)過點,且點到橢圓的兩焦點的距離之和為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線與交于點,為坐標(biāo)原點,求證:三點共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com