【題目】某學(xué)校要定制高一年級的校服,學(xué)生根據(jù)廠家提供的參考身高選擇校服規(guī)格.據(jù)統(tǒng)計,高一年級女生需要不同規(guī)格校服的頻數(shù)如表所示.

校服規(guī)格

155

160

165

170

175

合計

頻數(shù)

39

64

167

90

26

386

如果用一個量來代表該校高一年級女生所需校服的規(guī)格,那么在中位數(shù)、平均數(shù)和眾數(shù)中,哪個量比較合適?試討論用表中的數(shù)據(jù)估計全國高一年級女生校服規(guī)格的合理性.

【答案】眾數(shù),合理性見解析.

【解析】

根據(jù)畫出條形統(tǒng)計圖分析即可.

為了更直觀地觀察數(shù)據(jù)的特征,我們用條形圖來表示表中的數(shù)據(jù)(圖).可以發(fā)現(xiàn),選擇校服規(guī)格為“165”的女生的頻數(shù)最高,所以用眾數(shù)165作為該校高一年級女生校服的規(guī)格比較合適.

由于全國各地的高一年級女生的身高存在一定的差異,所以用一個學(xué)校的數(shù)據(jù)估計全國高一年級女生的校服規(guī)格不合理.

眾數(shù)只利用了出現(xiàn)次數(shù)最多的那個值的信息.眾數(shù)只能告訴我們它比其他值出現(xiàn)的次數(shù)多,但并未告訴我們它比別的數(shù)值多的程度。因此,眾數(shù)只能傳遞數(shù)據(jù)中的信息的很少一部分,對極端值也不敏感.

一般地,對數(shù)值型數(shù)據(jù)(如用水量、身高、收入、產(chǎn)量等)集中趨勢的描述,可以用平均數(shù)、中位數(shù)而對分類型數(shù)據(jù)(如校服規(guī)格、性別、產(chǎn)品質(zhì)量等級等)集中趨勢的描述,可以用眾數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (為自然對數(shù)的底數(shù)).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)ax2bxc的圖象與x軸有兩個不同的交點,若f(c)00<x<c時,f(x)>0,

(1)證明:f(x)0的一個根;

(2)試比較c的大小;

(3)證明:-2<b<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行電腦知識競賽,現(xiàn)將高一參賽學(xué)生的成績進行整理后分成五組繪制成如圖所示的頻率分布直方圖,已知圖中從左到右的第一、二、三、四、五小組的頻率分別是0.30,0.40,0.15,0.10,0.05.

求:(1)高一參賽學(xué)生的成績的眾數(shù)、中位數(shù);

(2)高一參賽學(xué)生的平均成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合P={x|x2-8x-20≤0},S={x||x-1|≤m}.

(1)若(PS)P,求實數(shù)m的取值范圍;

(2)是否存在實數(shù)m,使得“xP”是“xS”的充要條件?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)100位居民的人均月用水量(單位:)的分組及各組的頻數(shù)如下:

,4; ,8; ,15;

,22; ,25; ,14;

,6; ,4; ,2.

(1)列出樣本的頻率分布表;

(2)畫出頻率分布直方圖,并根據(jù)直方圖估計這組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);

(3)當(dāng)?shù)卣贫巳司掠盟繛?/span>的標(biāo)準(zhǔn),若超出標(biāo)準(zhǔn)加倍收費,當(dāng)?shù)卣f,以上的居民不超過這個標(biāo)準(zhǔn),這個解釋對嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一種螺栓的簡易三視圖,其螺帽俯視圖是一個正六邊形,則由三視圖尺寸,該螺栓的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓經(jīng)過點,且點到橢圓的兩焦點的距離之和為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線交于點,為坐標(biāo)原點,求證:三點共線.

查看答案和解析>>

同步練習(xí)冊答案