【題目】已知數(shù)列,為其前n項(xiàng)的和,滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為,求證:當(dāng)時(shí);
(3)若函數(shù)的定義域?yàn)?/span>R,并且,求證.
【答案】(1);(2)見(jiàn)解析;(3)見(jiàn)解析.
【解析】
(1)當(dāng)時(shí),,當(dāng).
(2)求出數(shù)列的通項(xiàng)公式可后求前n項(xiàng)和及,整理得,也可用數(shù)學(xué)歸納法證明該等式.
(3)結(jié)合函數(shù)的定義域及已知極限可得,再就的符號(hào)分類討論可證.
解:(1)當(dāng)時(shí),,
當(dāng)時(shí),,
∴.
(2)法一:∵,∴,
∴
.
法二:數(shù)學(xué)歸納法.
①時(shí),,,等式成立.
②假設(shè)時(shí)有,
當(dāng)時(shí),,
又
.
故即,
∴是原式也成立,
由①②可知當(dāng)時(shí).
(3) ∵函數(shù)的定義域?yàn)?/span>,所以恒不為零,
而的值域?yàn)?/span>,∴.
又時(shí),,與矛盾,故.
易知,否則若,則,與矛盾,
若,則,與矛盾,
∴,∴即有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請(qǐng)研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問(wèn)題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C上的點(diǎn)到點(diǎn)的距離與它到直線的距離之比為,圓O的方程為,曲線C與x軸的正半軸的交點(diǎn)為A,過(guò)原點(diǎn)O且異于坐標(biāo)軸的直線與曲線C交于B,C兩點(diǎn),直線AB與圓O的另一交點(diǎn)為P,直線PD與圓O的另一交點(diǎn)為Q,其中,設(shè)直線AB,AC的斜率分別為;
(1)求曲線C的方程,并證明到點(diǎn)M的距離;
(2)求的值;
(3)記直線PQ,BC的斜率分別為、,是否存在常數(shù),使得?若存在,求的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義上的函數(shù),若滿足:對(duì)任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
(1)設(shè),判斷在上是否有界函數(shù),若是,請(qǐng)說(shuō)明理由,并寫(xiě)出的所有上界的值的集合,若不是,也請(qǐng)說(shuō)明理由;
(2)若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),都有.
(1)求數(shù)列的通項(xiàng)公式;
(2)如果等比數(shù)列共有2016項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列的每相鄰兩項(xiàng)與之間插入個(gè)后,得到一個(gè)新的數(shù)列.求數(shù)列中所有項(xiàng)的和;
(3)是否存在實(shí)數(shù),使得存在,使不等式成立,若存在,求實(shí)數(shù)的范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為;
當(dāng)P是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)“為它自身,平面曲線C上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn),則點(diǎn)的“伴隨點(diǎn)”是點(diǎn)A
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對(duì)稱,則其“伴隨曲線”關(guān)于y軸對(duì)稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是_____________(寫(xiě)出所有真命題的序列).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,且,且,函數(shù).
(1)設(shè),,若是奇函數(shù),求的值;
(2)設(shè),,判斷函數(shù)在上的單調(diào)性并加以證明;
(3)設(shè),,,函數(shù)的圖象是否關(guān)于某垂直于軸的直線對(duì)稱?如果是,求出該對(duì)稱軸,如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,橢圓的四個(gè)頂點(diǎn)圍成的四邊形的面積為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線與橢圓交于, 兩點(diǎn), 的中點(diǎn)在圓上,求(為坐標(biāo)原點(diǎn))面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com